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a b s t r a c t

Let G be a graph with n vertices and L(G) its Laplacian matrix. Define ρG =
1
dG

L(G) to
be the density matrix of G, where dG denotes the sum of degrees of all vertices of G.
Let λ1, λ2, . . . , λn be the eigenvalues of ρG. The von Neumann entropy of G is defined as
S(G) = −

∑n
i=1λilog2λi. In this paper, we establish a lower bound and an upper bound to

the von Neumann entropy for randommultipartite graphs.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple undirected graphwith vertex set VG = {v1, v2, . . . , vn} and edge set EG. The adjacency matrix A(G) of G is
the symmetric matrix [Aij], where Aij = Aji = 1 if vertices vi and vj are adjacent, otherwise Aij = Aji = 0. Let dG(vi) denote the
degree of the vertex vi, that is, the number of edges incident on vi. The Laplacian matrix of G is the matrix L(G) = D(G)−A(G),
where D(G), called the degree matrix, is a diagonal matrix with the diagonal entries the degrees of the vertices of G.

The von Neumann entropy was originally introduced by von Neumann around 1927 for proving the irreversibility of
quantum measurement processes in quantum mechanics [20]. It is defined to be

S = −

n∑
i=1

µilog2µi,

where µi are the eigenvalues of the n × n density matrix describing the quantum-mechanical system (Normally, a density
matrix is a positive semidefinite matrix whose trace is equal to 1). It is known [12] that the von Neumann entropy of a
quantum state provides a means of characterizing its information content, which is in analogy to the Shannon entropy of a
statistical ensemble from classical information theory; and that the von Neumann entropy of a state takes center stage in
the burgeoning field of quantum information theory. Up until now, there are lots of studies on the von Neumann entropy,
and we refer the reader to [1–3,10,11,13,14,17,18,20,22].

In [4], Braunstein et al. defined the density matrix of a graph G as

ρG :=
1
dG

L(G) =
1

Tr(D(G))
L(G),
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where dG =
∑

vi∈VG
dG(vi) = Tr(D(G)) is the degree sum of G, and Tr(D(G)) means the trace of D(G). Suppose that λ1 ≥ λ2 ≥

· · · ≥ λn = 0 are the eigenvalues of ρG. Then

S(G) := −

n∑
i=1

λilog2λi,

is called the von Neumann entropy of a graph G . By convention, define 0log20 = 0. It is known that this quantity can be
interpreted as a measure of regularity of graphs [4,15] and also that it can be used as a measure of graph complexity [9].

Let f (n), g(n) be two functions of n. Then f (n) = o(g(n)) means that f (n)/g(n) → 0, as n → ∞; and f (n) = O(g(n))
means that there exist two constants C1 > o and C2 > 0 such that C1 ≤ |f (n)/g(n)| ≤ C2, as n → ∞. Up until now, lots of
results on the von Neumann entropy of a graph have been given. For example, Braunstein et al. [4] proved that, for a graph
G on n vertices, 0 ≤ S(G) ≤ log2(n − 1), with the left equality holding if and only if G is a graph with only one edge, and the
right equality holding if and only if G is the complete graph Kn. In [16], Passerini and Severini showed that the von Neumann
entropy of regular graphs with n vertices tends to log2(n − 1) as n tends to ∞. More interesting, in [7], Du et al. considered
the von Neumann entropy of the Erdős–Rényi model Gn(p), named after Erdős and Rényi [8]. They proved that, for almost
all Gn(p) ∈ Gn(p), almost surely S(Gn(p)) = (1 + o(1))log2n, independently of p, where an event in a probability space is said
to be held asymptotically almost surely (a.s. for short) if its probability goes to one as n tends to infinity. And recently, in [6],
Dairyko et al. conjectured that all connected graphs of order n have von Neumann entropy at least as great as the star K1,n−1
and proved this for almost all graphs of order n. They also showed that adding an edge to a graph can lower its von Neumann
entropy.

The purpose of this paper is to study the von Neumann entropy of random multipartite graphs. We use Kn;β1,...,βk to
denote the complete k-partite graph with vertex set V (|V | = n), whose parts are V1, . . . , Vk (2 ≤ k = k(n) ≤ n) satisfying
|Vi| = nβi = nβi(n), i = 1, 2, . . . , k. The random k-partite graph model Gn;β1,...,βk (p) consists of all random k-partite
graphs in which the edges are chosen independently with probability p from the set of edges of Kn;β1,...,βk . We denote by
An,k := A(Gn;β1,...,βk (p)) = (xij)n×n the adjacency matrix of random k-partite graphs Gn;β1,...,βk (p) ∈ Gn;β1,...,βk (p), where xij is
a random indicator variable for {vi, vj} being an edge with probability p, for i ∈ Vl and j ∈ V \ Vl, i ̸= j, 1 ≤ l ≤ k. Then An,k
satisfies the following properties:

• xij’s, 1 ≤ i < j ≤ n, are independent random variables with xij = xji;
• Pr(xij = 1) = 1 − Pr(xij = 0) = p if i ∈ Vl and j ∈ V \ Vl, while Pr(xij = 0) = 1 if i ∈ Vl and j ∈ Vl, 1 ≤ l ≤ k.
Note that when k = n, Gn;β1,...,βk = Gn(p), that is, the randommultipartite graph model can be viewed as a generalization

to the Erdős–Rényi model.
In this paper, we establish a lower bound and an upper bound to S(Gn;β1,...,βk ) for almost all Gn;β1,...,βk (p) ∈ Gn;β1,...,βk (p)

by the limiting behavior of the spectra of random symmetric matrices. Our main result is stated as follows:

Theorem 1. Let Gn;β1,...,βk (p) ∈ Gn;β1,...,βk (p) . Then almost surely

1 + o(1)

1 −
∑k

i=1 β2
i

log2

(
n

(
1 −

k∑
i=1

β2
i

))
≤ S(Gn;β1,...,βk (p))

≤
1 − max1≤i≤k{βi} + o(1)

1 −
∑k

i=1 β2
i

log2

⎛⎝ n
(
1 −

∑k
i=1 β2

i

)
1 − max1≤i≤k{βi}

⎞⎠ ,

independently of 0 < p < 1, where o(1)means a quantity goes to 0 as n goes to infinity.

2. Proof of Theorem 1

Before proceeding, we give some definitions and lemmas.

Lemma 1 (Bryc et al. [5]). Let X be a symmetric random matrix satisfying that the entries Xij, 1 ≤ i < j ≤ n, are a collection
of independent identically distributed (i.i.d.) random variables with E(X12) = 0,Var(X12) = 1 and E(X4

12) < ∞. Define
S := diag

(∑
i̸=jXij

)
1≤i≤n

and let M = S − X, where diag{·} denotes a diagonal matrix. Denote by ∥M∥ the spectral radius
of M. Then

lim
n→∞

∥M∥
√
2n log n

= 1 a.s.,

i.e., with probability 1, ∥M∥
√
2n log n converges weakly to 1 as n tends to infinity.

Lemma 2 (Weyl [21]). Let X, Y and Z be n× n Hermitian matrices such that X = Y + Z. Suppose that X, Y , Z have eigenvalues,
respectively, λ1(X) ≥ · · · ≥ λn(X), λ1(Y ) ≥ · · · ≥ λn(Y ), λ1(Z) ≥ · · · ≥ λn(Z). Then, for i = 1, 2, . . . , n, the following
inequalities hold:

λi(Y ) + λn(Z) ≤ λi(X) ≤ λi(Y ) + λ1(Z).
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