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a b s t r a c t

A supergrid graph is a finite induced subgraph of the infinite graph associated with the
two-dimensional supergrid. The supergrid graphs contain grid graphs and triangular grid
graphs as subgraphs. TheHamiltonian cycle problem for grid and triangular grid graphswas
known to be NP-complete. Recently, we have proved the Hamiltonian cycle problem on
supergrid graphs to be NP-complete. The Hamiltonian cycle problem on supergrid graphs
can be applied to control the stitching trace of computerized sewing machines. In this
paper, we will study the Hamiltonian cycle property of linear-convex supergrid graphs
which form a subclass of supergrid graphs. A connected graph is called k-connected if there
are k vertex-disjoint paths between every pair of vertices, and is called locally connected
if the neighbors of each vertex in it form a connected subgraph. In this paper, we first
show that any 2-connected, linear-convex supergrid graph is locally connected. We then
give constructive proofs to show that any 2-connected, linear-convex supergrid graph
contains a Hamiltonian cycle. Based on the constructive proofs, we finally present a linear-
time algorithm to construct a Hamiltonian cycle of a 2-connected, linear-convex supergrid
graph.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A Hamiltonian cycle in a graph is a simple cycle in which each vertex of the graph appears exactly once. The Hamiltonian
cycle problem involves determining whether or not a graph contains a Hamiltonian cycle. A graph is said to be Hamiltonian
if it contains a Hamiltonian cycle. The Hamiltonian path problem is defined similarly. They have numerous applications
in different areas, including establishing transport routes, production launching, the on-line optimization of flexible
manufacturing systems [1], computing the perceptual boundaries of dot patterns [29], pattern recognition [2,30,33], and
DNA physical mapping [14]. It is well known that the Hamiltonian cycle and path problems are NP-complete for general
graphs [10,21]. The same holds true for bipartite graphs [24], split graphs [11], circle graphs [7], undirected path graphs [3],
planar bipartite graphswithmaximumdegree 3 [20], grid graphs [20], triangular grid graphs [12], and supergrid graphs [18].

Let G be a graph with vertex set V (G) and edge set E(G). Graph G is called connected if there exists a path between every
pair of its vertices, and G is said to be k-connected (k > 2) if there are k vertex-disjoint paths between every pair of vertices
in it. Obviously, if graph G is not 2-connected, then it is not Hamiltonian. However, a 2-connected graph does not imply
that it is Hamiltonian. For a vertex v of G, the neighborhood NG(v) of v is the set of all vertices adjacent to v. In general, we
remove the subscript ‘G’ of NG(v) from the notation if it has no ambiguity. For a subset of vertices S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S]. A vertex v of G is said to be locally connected if G[N(v)] is connected. Graph G is called
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Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid graph, where circles represent the vertices and solid lines indicate the edges in the
graphs.

locally connected if each vertex of G is locally connected. The locally connected property of graphs can be applied to VLSI
architecture [15]. Some further survey for local connectivity can be found in [9].

The two-dimensional integer grid G∞ is an infinite graphwhose vertex set consists of all points of the Euclidean planewith
integer coordinates and inwhich two vertices are adjacent if and only if the (Euclidean) distance between them is equal to 1.
The two-dimensional triangular grid T∞ is an infinite graph obtained fromG∞ by adding all edges on the lines traced fromup-
left to down-right. A grid graph is a finite, vertex-induced subgraph of G∞. For a node v in the planewith integer coordinates,
let vx and vy be the x and y coordinates of node v, respectively, denoted by v = (vx, vy). If v is a vertex in a grid graph, then its
possible neighbor vertices include (vx, vy + 1), (vx − 1, vy), (vx + 1, vy), and (vx, vy − 1). For example, Fig. 1(a) shows a grid
graph. A triangular grid graph is a finite, vertex-induced subgraph of T∞. If v is a vertex in a triangular grid graph, then its
possible neighbor vertices include (vx, vy +1), (vx −1, vy), (vx +1, vy), (vx, vy −1), (vx −1, vy +1), and (vx +1, vy −1). For
example, Fig. 1(b) depicts a triangular grid graph. Thus, triangular grid graphs contain grid graphs as subgraphs. Note that
triangular grid graphs defined above are isomorphic to the original triangular grid graphs studied in the literature [12] but
these graphs are different when considered as geometric graphs. By the same construction of triangular grid graphs from
grid graphs, we have proposed a new class of graphs, namely supergrid graphs, in [18]. The two-dimensional supergrid S∞ is
an infinite graph obtained from T∞ by adding all edges on the lines traced from up-right to down-left. A supergrid graph is
a finite, vertex-induced subgraph of S∞. The possible adjacent vertices of a vertex v = (vx, vy) in a supergrid graph include
(vx, vy + 1), (vx − 1, vy), (vx + 1, vy), (vx, vy − 1), (vx − 1, vy + 1), (vx + 1, vy − 1), (vx + 1, vy + 1), and (vx − 1, vy − 1).
Then, supergrid graphs contain grid graphs and triangular grid graphs as subgraphs. For example, Fig. 1(c) shows a supergrid
graph. Notice that grid and triangular grid graphs are not subclasses of supergrid graphs, and the converse is also true: these
classes of graphs have common elements (points) but in general they are distinct since the edge sets of these graphs are
different. Obviously, all grid graphs are bipartite [20] but triangular grid graphs and supergrid graphs are not bipartite.

The Hamiltonian cycle problem for grid graphs and triangular grid graphs is shown to be NP-complete [12,20]. The
Hamiltonian cycle problem on supergrid graphs can be applied to control the stitching trace of a computerized sewing
machine as stated in [18]. We also proved that the Hamiltonian cycle problem is NP-complete for supergrid graphs [18].
Thus, an important line of investigation is to discover the complexities of the Hamiltonian cycle problem when the input is
restricted to be in special subclasses of supergrid graphs. In this paper, we will study the Hamiltonian property of a subclass
of supergrid graphs, called linear-convex supergrid graphs. A supergrid graph G is linearly convex if, for every line l which
contains an edge of S∞, the intersection of l and G is either a line segment (a path in G), or a point (a vertex in G), or
empty. Linear-convex triangular grid graphs are defined similarly. In general, a linear-convex supergrid graph is always
a linear-convex triangular grid graph with the same vertex set, but the reverse is not true. For example, a linear-convex
triangular grid graph Gt is shown in Fig. 2(a), but its corresponding supergrid graph with vertex set V (Gt) is not linearly
convex, as depicted in Fig. 2(b). In [12,31], the authors showed that any 2-connected, linear-convex triangular grid graph
with the exception of the Star of David graph always contains a Hamiltonian cycle. However, the result cannot be applied to
2-connected, linear-convex supergrid graphs. In this paper, we first show that any 2-connected, linear-convex supergrid
graph is locally connected. We then prove that any 2-connected, linear-convex supergrid graph contains a Hamiltonian
cycle. Solid supergrid graphs are supergrid graphs without holds. If a supergrid graph G contains a hole, then we can
find a line l such that the intersection of l and G contains at least two line segments, and, hence, G is not a linear-convex
supergrid graph. Thus, every linear-convex supergrid graph is a solid supergrid graph, but the reverse is not true. For instance,
Fig. 2(b) is a solid supergrid graph but is not linearly convex. Then, linear-convex supergrid graphs form a subclass of solid
supergrid graphs. The complexity of the Hamiltonian cycle problem for solid supergrid graphs is still unknown. Solving the
Hamiltonian cycle problem for linear-convex supergrid graphs may arise results that can help in solving the problem for
solid supergrid graphs.

Related works of investigation are summarized as follows. Itai et al. [20] showed that the Hamiltonian cycle and path
problems for grid graphs are NP-complete. They also gave necessary and sufficient conditions for a rectangular grid graph
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