Dominating plane triangulations

Michael D. Plummer ${ }^{\text {a }}$, Dong Ye ${ }^{\text {b,* }}$, Xiaoya Zha ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Vanderbilt University, Nashville, TN 37215, USA
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA

ARTICLE INFO

Article history:

Received 20 August 2014
Received in revised form 31 March 2016
Accepted 16 April 2016
Available online xxxx

Keywords:

Plane triangulation
Domination
Hamilton cycle
Outerplanar graph

Abstract

In 1996, Tarjan and Matheson proved that if G is a plane triangulated disc with n vertices, $\gamma(G) \leq n / 3$, where $\gamma(G)$ denotes the domination number of G, i.e. the cardinality of the smallest set of vertices S such that every vertex of G is either in S or adjacent to a vertex in S. Furthermore, they conjectured that the constant $1 / 3$ could be improved to $1 / 4$ for a sufficiently large n. Their conjecture remains unsettled. In the present paper, it is proved that if G is a Hamiltonian plane triangulation with n vertices and minimum degree at least 4, then $\gamma(G) \leq \max \{\lceil 2 n / 7\rceil,\lfloor 5 n / 16\rfloor\}$. It follows immediately that if G is a 4-connected plane triangulation with n vertices, then $\gamma(G) \leq \max \{\lceil 2 n / 7\rceil,\lfloor 5 n / 16\rfloor\}$. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

In 1996, Matheson and Tarjan [5] proved that if G is a plane triangulated disc then $\gamma(G) \leq|V(G)| / 3$. (In particular, then, the same bound on γ applies to any triangulation of the plane.) Plummer and Zha [7] proved that if G is a triangulation of the projective plane, then $\gamma(G) \leq|V(G)| / 3$ and if G is a triangulation of either the torus or Klein bottle, then $\gamma(G) \leq\lceil|V(G)| / 3\rceil$. The latter result was sharpened by Honjo et al. [3] who showed that $\gamma(G) \leq|V(G)| / 3$ for graphs embedded in these two surfaces. They also showed that for any surface Σ, there is a positive integer $\rho(\Sigma)$ such that if G is embedded as a triangulation of Σ and the embedding has face-width at least $\rho(\Sigma)$, then $\gamma(G) \leq|V(G)| / 3$. Even more recently, Furuya and Matsumoto [2] generalized this result by showing that $\gamma(G) \leq|V(G)| / 3$, for every triangulation G of any closed surface.

Conjecture 1.1 (Matheson and Tarjan, [5]). Let G be plane triangulation with a sufficiently large number of vertices. Then $\gamma(G) \leq n / 4$.

The triangle has $\gamma\left(K_{3}\right)=1=n / 3$, the octahedron shown in Fig. 1 (left) has $\gamma=2=n / 3$ and the 7 -vertex graph shown in Fig. 1 (right) has $\gamma=2=2 n / 7>n / 4$, so this shows that one must assume $n \geq 8$ in order for the Matheson-Tarjan conjecture to be true.

More generally, in [7] the first and third authors of the present paper conjectured that if G is a triangulation of any non-spherical surface, then $\gamma(G) \leq n / 4$. Both these conjectures involving the $n / 4$ bound remain unsettled.

In 2010, King and Pelsmajer [4] proved the Matheson-Tarjan's conjecture holds in the plane case when the maximum degree of the triangulation is 6 . It was proved independently by Nünning [6] and by Sohn and Yuan [8] that for any graph G with n vertices and minimum degree $\delta(G) \geq 4, \gamma(G) \leq 4 n / 11$.

An outerplanar graph is a graph embedded in the plane in such a way that all vertices of the graph lie on the boundary of the infinite face. An outerplanar graph is maximal (outerplanar) if it is not possible to add any new edge to G without

[^0]

Fig. 1. Two triangulations with large domination ratio.

Fig. 2. A Hamilton cycle H and 2 -vertices v_{1} and v_{2}.
destroying outerplanarity. In 2013, Campos and Wakabayashi [1] proved that if G is a maximal outerplanar graph with at least $n \geq 4$ vertices, then $\gamma(G) \leq(n+t) / 4$, where t is the number of vertices of degree 2 in G.

In the present paper we will show that if G is a Hamiltonian plane triangulation on n vertices with minimum degree $\delta(G) \geq 4$, then $\gamma(G) \leq \max \{\lceil 2 n / 7\rceil,\lfloor 5 n / 16\rfloor\}$. It follows immediately that if G is a 4 -connected plane triangulation on n vertices, then $\gamma(G) \leq \max \{\lceil 2 n / 7\rceil,\lfloor 5 n / 16\rfloor\}$.

2. Preferred Hamilton cycles in plane triangulations

Let G be a plane triangulation with $\delta(G) \geq 4$ and suppose G contains a Hamilton cycle H. We can think of H bounding a triangulated inner subgraph $G_{i n t}$ and a triangulated outer subgraph $G_{\text {ext }}$ such that $G_{\text {int }} \cap G_{\text {ext }}=H$. Suppose $v \in V(G)$. We denote by $i \operatorname{deg}(v)$ (respectively, odeg (v)) the degree of vertex v in $G_{\text {int }}$ (resp. in $G_{\text {ext }}$).

We will need to pay particular attention to those vertices which have $i \operatorname{deg}(v)=2$ or $o \operatorname{deg}(v)=2$. We will call these vertices 2-vertices. Examples are shown in Fig. 2 where $i \operatorname{deg}\left(v_{1}\right)=2$ and $o \operatorname{deg}\left(v_{2}\right)=2$ respectively and hence each is an example of a 2 -vertex.

Let G be a Hamiltonian plane triangulation. Such a graph may have many Hamilton cycles. We now show how to select such a cycle with certain properties we shall need later on. To this end, let H be a Hamilton cycle in G. A triangle T of $G_{i n t}$ will be called internal (with respect to H) if $E(T) \cap E(H)=\emptyset$.

Lemma 2.1. Let G be a plane triangulation with $\delta(G) \geq 4$ which contains a Hamilton cycle. Suppose $\gamma(G) \geq 2$. Then there exists a Hamilton cycle in G containing no three consecutive 2-vertices.

Proof. Since G is a plane triangulation with minimum degree $\delta(G) \geq 4$, the graph $|V(G)| \geq 5$. If G has 5 vertices, then G is K_{5} which is not planar. So G has at least 6 vertices. Choose a Hamilton cycle H with minimum number of 2 -vertices. The lemma follows directly from the following claim.

Claim. The Hamilton cycle H has no three consecutive 2-vertices.
Proof of Claim. Suppose on the contrary that H contains three consecutive 2-vertices. Let three such consecutive 2-vertices be, in order, x, y and z. Let the predecessor of x be a and the successor of z be b_{1}. We may assume, without loss of generality, that edges $a y, y b_{1} \in G_{i n t}$ and $x z \in G_{e x t}$. Note that $a \neq b_{1}$ as $|V(G)| \geq 6$.

Let $P:=z b_{1} \cdots b_{k}$ be a maximal path of H such that all vertices in P are neighbors of y via an edge in $G_{i n t}$. If $b_{k}=a$, then all vertices of G are adjacent to y. But in this case $\gamma(G)=1$, a contradiction to $\gamma(G)=2$. So assume $b_{k} \neq a$. Since P is maximal and G is a plane triangulation, the vertex b_{k} has a neighbor via an edge in $G_{i n t}$ other than y and the two neighbors in H.

If $k=1$, replace the path $a x y z b_{1}$ by $a x z y b_{1}$ in H to obtain a new Hamilton cycle H^{\prime}. Then whereas H has x, y and z as 2 -vertices, H^{\prime} has vertices y and z as 2 -vertices. But neither x and b_{1} is a 2 -vertex with respect to H^{\prime} since the degree of x is at least 4 and our assumption on the fourth neighbor of b_{k}. No other vertex changes whether or not it is a 2 -vertex. (See Fig. 3.) So H^{\prime} has fewer 2-vertices than does H, contradicting the assumption that H has the minimum number of 2-vertices.

In the following, suppose that $k \neq 1$. In this case, we replace the path $a x y z b_{1} \cdots b_{k-1} b_{k}$ by the path $a x z b_{1} \cdots b_{k-1} y b_{k}$ in H to obtain a new Hamilton cycle H^{\prime}. Note that x and z are no longer 2-vertices of H^{\prime}, but b_{k-1} is a new 2-vertex of H^{\prime}. No other vertex changes whether or not it is a 2 -vertex. (See Fig. 4.) So H^{\prime} has fewer 2-vertices than does H, a contradiction to the assumption that H has minimum number of 2 -vertices. This completes the proof.

https://daneshyari.com/en/article/6871870

Download Persian Version:
https://daneshyari.com/article/6871870

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: michael.d.plummer@vanderbilt.edu (M.D. Plummer), dong.ye@mtsu.edu (D. Ye), xiaoya.zha@mtsu.edu (X. Zha).
 http://dx.doi.org/10.1016/j.dam.2016.04.011
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

