ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Dominating plane triangulations

Michael D. Plummer^a, Dong Ye^{b,*}, Xiaoya Zha^b

^a Department of Mathematics, Vanderbilt University, Nashville, TN 37215, USA
^b Department of Mathematical Sciences, Middle Tennessee State University, Murfreesboro, TN 37132, USA

ARTICLE INFO

Article history: Received 20 August 2014 Received in revised form 31 March 2016 Accepted 16 April 2016 Available online xxxx

Keywords: Plane triangulation Domination Hamilton cycle Outerplanar graph

1. Introduction

ABSTRACT

In 1996, Tarjan and Matheson proved that if *G* is a plane triangulated disc with *n* vertices, $\gamma(G) \leq n/3$, where $\gamma(G)$ denotes the domination number of *G*, i.e. the cardinality of the smallest set of vertices *S* such that every vertex of *G* is either in *S* or adjacent to a vertex in *S*. Furthermore, they conjectured that the constant 1/3 could be improved to 1/4 for a sufficiently large *n*. Their conjecture remains unsettled. In the present paper, it is proved that if *G* is a Hamiltonian plane triangulation with *n* vertices and minimum degree at least 4, then $\gamma(G) \leq \max\{\lceil 2n/7 \rceil, \lfloor 5n/16 \rfloor\}$. It follows immediately that if *G* is a 4-connected plane triangulation with *n* vertices, then $\gamma(G) \leq \max\{\lceil 2n/7 \rceil, \lfloor 5n/16 \rfloor\}$.

© 2016 Elsevier B.V. All rights reserved.

In 1996, Matheson and Tarjan [5] proved that if *G* is a plane triangulated disc then $\gamma(G) \leq |V(G)|/3$. (In particular, then, the same bound on γ applies to any triangulation of the plane.) Plummer and Zha [7] proved that if *G* is a triangulation of the projective plane, then $\gamma(G) \leq |V(G)|/3$ and if *G* is a triangulation of either the torus or Klein bottle, then $\gamma(G) \leq ||V(G)|/3|$. The latter result was sharpened by Honjo et al. [3] who showed that $\gamma(G) \leq |V(G)|/3$ for graphs embedded in these two surfaces. They also showed that for any surface Σ , there is a positive integer $\rho(\Sigma)$ such that if *G* is embedded as a triangulation of Σ and the embedding has face-width at least $\rho(\Sigma)$, then $\gamma(G) \leq |V(G)|/3$. Even more recently, Furuya and Matsumoto [2] generalized this result by showing that $\gamma(G) \leq |V(G)|/3$, for every triangulation *G* of any closed surface.

Conjecture 1.1 (Matheson and Tarjan, [5]). Let G be plane triangulation with a sufficiently large number of vertices. Then $\gamma(G) \leq n/4$.

The triangle has $\gamma(K_3) = 1 = n/3$, the octahedron shown in Fig. 1 (left) has $\gamma = 2 = n/3$ and the 7-vertex graph shown in Fig. 1 (right) has $\gamma = 2 = 2n/7 > n/4$, so this shows that one must assume $n \ge 8$ in order for the Matheson–Tarjan conjecture to be true.

More generally, in [7] the first and third authors of the present paper conjectured that if *G* is a triangulation of *any* non-spherical surface, then $\gamma(G) \le n/4$. Both these conjectures involving the n/4 bound remain unsettled.

In 2010, King and Pelsmajer [4] proved the Matheson–Tarjan's conjecture holds in the plane case when the maximum degree of the triangulation is 6. It was proved independently by Nünning [6] and by Sohn and Yuan [8] that for any graph *G* with *n* vertices and minimum degree $\delta(G) \ge 4$, $\gamma(G) \le 4n/11$.

An outerplanar graph is a graph embedded in the plane in such a way that all vertices of the graph lie on the boundary of the infinite face. An outerplanar graph is *maximal* (outerplanar) if it is not possible to add any new edge to *G* without

* Corresponding author. E-mail addresses: michael.d.plummer@vanderbilt.edu (M.D. Plummer), dong.ye@mtsu.edu (D. Ye), xiaoya.zha@mtsu.edu (X. Zha).

http://dx.doi.org/10.1016/j.dam.2016.04.011 0166-218X/© 2016 Elsevier B.V. All rights reserved.

Please cite this article in press as: M.D. Plummer, et al., Dominating plane triangulations, Discrete Applied Mathematics (2016), http://dx.doi.org/10.1016/j.dam.2016.04.011

<u>ARTICLE IN PRESS</u>

M.D. Plummer et al. / Discrete Applied Mathematics & (****) ****-***

Fig. 1. Two triangulations with large domination ratio.

Fig. 2. A Hamilton cycle *H* and 2-vertices v_1 and v_2 .

destroying outerplanarity. In 2013, Campos and Wakabayashi [1] proved that if *G* is a maximal outerplanar graph with at least $n \ge 4$ vertices, then $\gamma(G) \le (n + t)/4$, where *t* is the number of vertices of degree 2 in *G*.

In the present paper we will show that if *G* is a Hamiltonian plane triangulation on *n* vertices with minimum degree $\delta(G) \ge 4$, then $\gamma(G) \le \max\{\lceil 2n/7 \rceil, \lfloor 5n/16 \rfloor\}$. It follows immediately that if *G* is a 4-connected plane triangulation on *n* vertices, then $\gamma(G) \le \max\{\lceil 2n/7 \rceil, \lfloor 5n/16 \rfloor\}$.

2. Preferred Hamilton cycles in plane triangulations

Let *G* be a plane triangulation with $\delta(G) \ge 4$ and suppose *G* contains a Hamilton cycle *H*. We can think of *H* bounding a triangulated inner subgraph G_{int} and a triangulated outer subgraph G_{ext} such that $G_{int} \cap G_{ext} = H$. Suppose $v \in V(G)$. We denote by $i \deg(v)$ (respectively, $o \deg(v)$) the degree of vertex v in G_{int} (resp. in G_{ext}).

We will need to pay particular attention to those vertices which have $i \deg(v) = 2$ or $o \deg(v) = 2$. We will call these vertices 2-*vertices*. Examples are shown in Fig. 2 where $i \deg(v_1) = 2$ and $o \deg(v_2) = 2$ respectively and hence each is an example of a 2-vertex.

Let *G* be a Hamiltonian plane triangulation. Such a graph may have many Hamilton cycles. We now show how to select such a cycle with certain properties we shall need later on. To this end, let *H* be a Hamilton cycle in *G*. A triangle *T* of G_{int} will be called *internal* (with respect to *H*) if $E(T) \cap E(H) = \emptyset$.

Lemma 2.1. Let *G* be a plane triangulation with $\delta(G) \ge 4$ which contains a Hamilton cycle. Suppose $\gamma(G) \ge 2$. Then there exists a Hamilton cycle in *G* containing no three consecutive 2-vertices.

Proof. Since *G* is a plane triangulation with minimum degree $\delta(G) \ge 4$, the graph $|V(G)| \ge 5$. If *G* has 5 vertices, then *G* is K_5 which is not planar. So *G* has at least 6 vertices. Choose a Hamilton cycle *H* with minimum number of 2-vertices. The lemma follows directly from the following claim.

Claim. The Hamilton cycle H has no three consecutive 2-vertices.

Proof of Claim. Suppose on the contrary that *H* contains three consecutive 2-vertices. Let three such consecutive 2-vertices be, in order, *x*, *y* and *z*. Let the predecessor of *x* be *a* and the successor of *z* be b_1 . We may assume, without loss of generality, that edges ay, $yb_1 \in G_{int}$ and $xz \in G_{ext}$. Note that $a \neq b_1$ as $|V(G)| \ge 6$.

Let $P := zb_1 \cdots b_k$ be a maximal path of H such that all vertices in P are neighbors of y via an edge in G_{int} . If $b_k = a$, then all vertices of G are adjacent to y. But in this case $\gamma(G) = 1$, a contradiction to $\gamma(G) = 2$. So assume $b_k \neq a$. Since P is maximal and G is a plane triangulation, the vertex b_k has a neighbor via an edge in G_{int} other than y and the two neighbors in H.

If k = 1, replace the path $axyzb_1$ by $axzyb_1$ in H to obtain a new Hamilton cycle H'. Then whereas H has x, y and z as 2-vertices, H' has vertices y and z as 2-vertices. But neither x and b_1 is a 2-vertex with respect to H' since the degree of x is at least 4 and our assumption on the fourth neighbor of b_k . No other vertex changes whether or not it is a 2-vertex. (See Fig. 3.) So H' has fewer 2-vertices than does H, contradicting the assumption that H has the minimum number of 2-vertices.

In the following, suppose that $k \neq 1$. In this case, we replace the path $axyzb_1 \cdots b_{k-1}b_k$ by the path $axzb_1 \cdots b_{k-1}yb_k$ in H to obtain a new Hamilton cycle H'. Note that x and z are no longer 2-vertices of H', but b_{k-1} is a new 2-vertex of H'. No other vertex changes whether or not it is a 2-vertex. (See Fig. 4.) So H' has fewer 2-vertices than does H, a contradiction to the assumption that H has minimum number of 2-vertices. This completes the proof. \Box

Download English Version:

https://daneshyari.com/en/article/6871870

Download Persian Version:

https://daneshyari.com/article/6871870

Daneshyari.com