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a b s t r a c t

A generalized vertex join of a graph is obtained by joining an arbitrary multiset of its
vertices to a new vertex.We present a low-order polynomial time algorithm for computing
the chromatic polynomials of generalized vertex joins of trees; by duality, this algorithm
can also be used to compute the flow polynomials of arbitrary outerplanar graphs. We
also present closed formulas for the chromatic polynomials of generalized vertex joins of
cliques, and the chromatic and flow polynomials of generalized vertex joins of cycles.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graph polynomials contain various information about the structure and properties of graphs; their study is an active area
of researchwithmany theoretical consequences and practical applications. Two of themost important single-variable graph
polynomials are the chromatic and flow polynomials. Their coefficients, roots, values at specific points, and derivatives have
meaningful interpretations related to the chromatic and flow numbers, Hamiltonicity [22], number of acyclic and totally
cyclic orientations [19], cycle space [27], and edge-connectivity [12] of the corresponding graphs.

Chromatic and flow polynomials also have connections to other sciences such as statistical physics, combinatorics, and
theoretical computer science. The chromatic polynomial is the zero-temperature limit of the anti-ferromagnetic Pottsmodel
and is used to model the behavior of crystals and ferromagnets [18]; it is also related to the Stirling and Beraha numbers,
which arise in a variety of analytic and combinatorics problems (cf. [13,1]). The flow polynomial is used in crystallography
and statistical mechanics to model the physical properties of ice and other crystals [11]. For more applications of chromatic
and flow polynomials, see the comprehensive survey of Ellis-Monaghan and Merino [4] and the bibliography therein.

Unfortunately, computing the chromatic and flow polynomials of a graph are very challenging tasks. These problems
are NP-hard for general graphs, and even for bipartite planar graphs and sparse graphs as shown in [16]. In fact, most
of the terms of the chromatic and flow polynomials of general graphs cannot even be approximated (see [5,16]). Thus, a
large volume of work in this area is focused on exploiting the structure of specific types of graphs in order to derive closed
formulas, algorithms, or heuristics for computing their chromatic and flowpolynomials. Such investigations frequently focus
on classes of graphs which are generalizations of trees, cliques, and cycles.

In particular, Wakelin et al. [3,24] considered a class of graphs called polygon trees and computed their chromatic
polynomials; they also characterized the chromatic polynomials of biconnected outerplanar graphs and the flow
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Fig. 1. Left: A graph G. Right: GS , the generalized vertex join of G using S = {v1, v1, v3, v4, v4, v4}.

polynomials of their dual graphs. Whitehead [25,26] characterized the chromatic polynomials of a class of clique-like
graphs called q-trees. Furthermore, Lazuka [10] obtained explicit formulas for the chromatic polynomials of cactus graphs,
Gordon [6] studied Tutte polynomials (a generalization of chromatic and flow polynomials) of rooted trees, and Mphako-
Banda [14,15] derived formulas for the chromatic, flow, and Tutte polynomials of flower graphs.

In this paper, we consider yet another generalization of trees, cliques, and cycles. We define a generalized vertex join
of a graph G to be the graph obtained by joining an arbitrary multiset of the vertices of G to a new vertex. We compute
the chromatic polynomials of generalized vertex joins of trees, cliques, and cycles, and use the duality of chromatic and
flow polynomials to find the flow polynomials of certain other classes of graphs, including outerplanar graphs. Thus, we
complement the work of Wakelin et al. [3,24] on chromatic polynomials of outerplanar graphs and flow polynomials of
their duals, by characterizing the flow polynomials of outerplanar graphs and the chromatic polynomials of their duals.
Several related results are included as well.

The paper is organized as follows. In the next section, we recall some notions and notations related to graph theory
and graph polynomials. In Section 3, we list well-known technical tools used in the computation of chromatic and flow
polynomials. In Section 4,we compute the chromatic polynomials of generalized vertex joins of trees;we relate these results
to outerplanar graphs in Section 5. In Section 6, we consider generalized vertex joins of cliques and cycles, and related dual
results. We conclude with some final remarks and open questions in Section 7.

2. Preliminaries

We assume the reader is familiar with basic graph theoretic notions and operations; refer to [2] for an extensive
background on graph theory. In this section, we first recall the definition of a multiset and related terms, followed by select
graph theoretic notions used in the paper.

Let G = (V , E) be a graph. A multiset S over V is a collection of vertices of V , each of which may appear more than
once in S. The number of times a vertex v appears in S is the multiplicity of v. The underlying set of S is the set S ′ which
contains the (unique) elements of S. For example, S = {v1, v1, v3, v4, v4, v4} is a multiset over V = {v1, v2, v3, v4, v5} and
the underlying set of S is S ′

= {v1, v3, v4}. Using this notion, we define the generalized vertex join of G using S to be the graph
GS = (V ∪ {v∗

}, E ∪ {vv∗
: v ∈ S}). Note that if the multiplicity of v in S is k, there are k parallel edges between v and v∗ in

GS . See Fig. 1 for an example.
Given G = (V , E) and S ⊂ V , the induced subgraph G[S] is the subgraph of G whose vertex set is S and whose edge set

consists of all edges of G which have both ends in S. Given u, v ∈ V , the contraction G/uv is obtained by deleting edge uv if
it exists, and identifying u and v into a single vertex. Note that G does not need to have the edge uv for G/uv to be defined.
Finally, we say that G is biconnected if G − v has exactly one connected component for all v ∈ V .

Many of the graphs considered in this paper are planar graphs — i.e., they can be drawn in the plane so that their edges
do not cross each other. A graph drawn in such a way is called a plane graph. If G is a plane graph, its dual G∗ is a graph that
has a vertex corresponding to each face of G, and an edge joining the vertices corresponding to neighboring faces for each
edge of G. Note that if G is connected, G = (G∗)∗. The weak dual of G is the subgraph of G∗ whose vertices correspond to the
bounded faces of G.

We close this section by introducing the two graph polynomials we will investigate in the sequel. A vertex coloring of
G is an assignment of colors to the vertices of G so that no edge is incident to vertices of the same color. A t-coloring of G
is a vertex coloring using at most t colors. The chromatic polynomial P(G; t) counts the number of t-colorings of G; if the
dependence on t is implied in the context, this can be abbreviated as P(G).

A closely related polynomial is the flow polynomial. A nowhere-zero Zt-flow on G is an assignment of values from
{1, 2, . . . , t −1} to the edges of an arbitrary orientation of G so that the total flow entering each vertex is congruent modulo
t to the total flow leaving each vertex. The flow polynomial F(G; t) counts the number of nowhere-zero Zt-flows on G; if the
dependence on t is implied, this can be abbreviated as F(G).

3. Tools for computing chromatic and flow polynomials

Beforewepresent ourmain results,we list a number ofwell-known facts frequently used in the computation of chromatic
and flow polynomials. Proofs of these and other related results are given by Tutte [23]. In what follows, let G = (V , E) be a
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