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a b s t r a c t

Weprove that theminimumaverage depth of a decision tree for sorting 8 pairwise different
elements is equal to 620160/8!.We showalso that eachdecision tree for sorting 8 elements,
which has minimum average depth (the number of such trees is approximately equal to
8.548 × 10326365), has also minimum depth. Both problems were considered by Knuth
(1998). To obtain these results, we use tools based on extensions of dynamic programming
which allow us to make sequential optimization of decision trees relative to depth and
average depth, and to count the number of decision trees with minimum average depth.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of sorting n pairwise different elements from a linearly ordered set is one of the model problems in
algorithm theory [6]. For solving this problem, we use binary decision trees [4,8] where each step is a comparison of two
elements. The minimum number of nodes in such a tree is equal to 2(n!) − 1. For n = 2, . . . , 11, the minimum depth of
a decision tree for sorting n elements is equal to the well known lower bound ⌈log2(n!)⌉ [10]. For n = 2, 3, 4, 5, 6, 9, 10,
the minimum average depth of a decision tree for sorting n elements is equal to the known lower bound ϕ(n)/n!, where
ϕ(n) = (⌈log2 n!⌉ + 1) · n! − 2⌈log2 n!⌉ is the minimum external path length in an extended binary tree with n! terminal
nodes [6]. Césary [3] proved that, for n = 7 and n = 8, there are no decision trees for sorting n elements whose average
depth is equal to ϕ(n)/n!. Kollár [7] found that the minimum average depth of a decision tree for sorting 7 elements is equal
to 62416/7!. We find that the minimum average depth of a decision tree for sorting 8 elements is equal to 620160/8!.

Another open problem considered by Knuth [6] is the existence of decision trees for sorting n elements which have
simultaneously minimum average depth and minimum depth. As it was mentioned by Knuth in [6], if a decision tree
for sorting n elements has average depth equal to ϕ(n)/n! then this tree has depth equal to ⌈log2 n!⌉. Therefore, for
n = 2, 3, 4, 5, 6, 9, 10, each decision tree for sorting n elements, which has minimum average depth, has also minimum
depth. We extended this result to the cases n = 7 (Kollár in [7] did not consider this question) and n = 8. For n = 2, . . . , 8,
we counted also the number of decision trees for sorting n elements which have minimum average depth. In particular, for
n = 8, the number of such trees is approximately equal to 8.548 × 10326365. We recalculate known values of the minimum
depth for n = 2, . . . , 8 and minimum average depth for n = 2, . . . , 7 to make sure that the new results are valid.

To obtain these results, we use tools based on extensions of dynamic programming [2,5,9] which allow us to make
sequential optimization of decision trees relative to depth and average depth, and to count the number of decision trees
withminimum average depth. The considered algorithms are not, of-course, brute-force algorithms (it is impossible towork
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Table 1
Results for sorting n = 2, 3, 4, 5 elements.

n 2 3 4 5

h(Pn) 1 3 5 7
havg (Pn) 2/2! 16/3! 112/4! 832/5!
ϕ(n)/n! 2/2! 16/3! 112/4! 832/5!Opthavg (Pn) 1 12 27, 744 2, 418, 647, 040
|P (n)| 3 19 219 4231

directly with 8.548 × 10326365 optimal trees for n = 8). However, they require the work with big number of subproblems
(for n = 8, the number of subproblems is equal to 431, 723, 379). We describe the notion of subproblems in Section 2. The
construction of the directed acyclic graph (DAG) representing the ordering of subproblems is discussed in Section 3.1.

The functions provided by the system DAGGER depend on the number of nodes and edges of the DAG corresponding to
the input problem. From empirical study, our system can work with DAGs of size around fifty million nodes.

The paper consists of four sections. Section 2 contains main results, Section 3 – description of tools, and Section 4 – short
conclusions.

2. Main results

Let x1, . . . , xn be pairwise different elements from a linearly ordered set. We should find a permutation (p1, . . . , pn)
from the set Pn of all permutations of the set {1, . . . , n} such that xp1 < · · · < xpn . Each nonempty subset Q of the set Pn
can be considered as a subproblem of the initial sorting problem Pn with inputs x1, . . . , xn for each of which there exists a
permutation (p1, . . . , pn) ∈ Q such that xp1 < · · · < xpn . We give all required definitions not for Pn but for an arbitrary
subset (subproblem) Q of Pn.

We denote by I(n) the set of all inequalities of the form xi < xj such that (i, j) ∈ π(n) = {(i, j) : 1 ≤ i, j ≤ n, i ≠ j}.
We say that the permutation p = (p1, . . . , pn) is compatible with the inequality xi < xj if and only if i precedes j in p. For
s1, . . . , sm ∈ I(n), we denote by Q (s1) . . . (sm) the set of all permutations from Q which are compatible with all inequalities
s1, . . . , sm.

For solving the subproblem Q , we use binary decision trees in which terminal nodes are labeled with permutations from
Q . Each nonterminal node is labeled with a comparison xi : xj of two elements where (i, j) ∈ π(n). Two edges start in this
node which are labeled with results of the comparison xi < xj and xj < xi, respectively.

We denote by E(Q ) the set of comparisons xi : xj such that (i, j) ∈ π(n), Q (xi < xj) ≠ ∅ and Q (xj < xi) ≠ ∅.
Let Γ be a decision tree and v be a node of Γ . We denote Q (v) = Q (s1) . . . (sm) where s1, . . . , sm are all inequalities

attached to the edges in the path from the root of Γ to v (if v is the root of Γ then Q (v) = Q ).
We will say that Γ solves the subproblem Q if each node v of Γ satisfies the following conditions:

1. If |Q (v)| = 1 and Q (v) = {p} then v is a terminal node labeled with the permutation p;
2. If |Q (v)| > 1 then the node v is a nonterminal node which is labeled with a comparison xi : xj from the set E(Q (v)).

We consider three cost functions for decision trees. Let Γ be a decision tree for solving the subproblem Q . We denote by
h(Γ ) the depth of Γ which is the maximum length of a path from the root to a terminal node, by l(Γ ) – the external path
length in Γ (the sum of lengths of all paths from the root to terminal nodes of Γ ), and by havg(Γ ) – the average depth of Γ
which is equal to l(Γ )/ |Q | (one can show that each decision tree for solving Q has |Q | terminal nodes).

We denote by h(Q ) the minimum depth, by l(Q ) – the minimum external path length, and by havg(Q ) – the minimum
average depth of decision trees for solving the subproblem Q . Note that havg(Q ) = l(Q )/ |Q |.

For n = 2, . . . , 8, the values h(Pn) and havg(Pn) = l(Pn)/n! can be found in Tables 1 and 2. For the considered values of n,
the parameter h(Pn) is equal to its lower bound ⌈log2(n!)⌉, and the parameter havg(Pn) is equal to its lower bound ϕ(n)/n!
for n = 2, . . . , 6.

Let Γ be a decision tree for solving the subproblem Q and ψ be one of the cost functions h, l, havg . We will say that Γ
is optimal relative to ψ if ψ(Γ ) = ψ(Q ). We denote by Optψ (Q ) the set of decision trees for the subproblem Q which are
optimal relative to ψ .

It is clear that Opthavg (Pn) = Optl(Pn). Based on results of computer experiments we obtain that Opthavg (Pn) ⊆ Opth(Pn)
for n = 2, . . . , 8. For n = 2, . . . , 8, we count also the cardinality of the set Opthavg (Pn).

A nonempty subproblem Q ⊆ Pn is called a separable subproblem of Pn if there exists a subset I of the set of inequalities
I(n) such thatQ is the set of all permutations from Pn which are compatiblewith each inequality from I . In particular,Q = Pn
if I = ∅. We denote by P (n) the set of all separable subproblems of Pn. The cardinality of the set P (n) for n = 1, . . . , 8 can
be found in Tables 1 and 2.

All computations were done using our software system Dagger [1] for optimization of decision trees and rules. This
system is based on extensions of dynamic programming that allow us to describe the set of all decision trees for the initial
problem, to make sequential optimization relative to different cost functions and to count the number of optimal decision
trees for some cost functions. The work of Dagger involves the construction and transformations of a directed acyclic graph
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