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1. Introduction and preliminaries

Only finite graphs without loops and multiple edges will be considered. For a fixed graph G, we denote the vertex set by
V(G), the edge set by E(G), the number of V(G) by |V (G)| and the number of E(G) by |E(G)|. For positive integers m and t,
K; denotes the complete graph of order t, and K, ,, denotes the complete bipartite graph with partite sets of sizes n and m,
respectively. For n = 1, Ky ; is also known as a star with m edges. For convenience, we use kH to denote a graph that has k
components each of them isomorphic to H throughout this paper. For the terms, we do not define here, please refer to [1].

For a fixed graph F, a graph G is F-saturated if there is no copy of F in G, but for any edge e ¢ E(G), there is a copy of F in
G |{e}. The collection of F-saturated graphs of order n is denoted by SAT (n, F). The saturation number, denoted as sat (n, F),
is the minimum number of edges in a graph in SAT (n, F). A graph G of order n is weakly F-saturated if G contains no copy of
F, and there is an ordering of edges of E (K, \G) so that if they are added one at a time, each edge added creates a new copy
of F. The minimum size of a weakly F-saturated graph G of order n is denoted by wsat(n, F). The set of graphs of order n
that are weakly F-saturated will be denoted by wSAT (n, F), and those graphs in wSAT (n, F) with wsat(n, F) edges will be
denoted by wSAT (n, F). Clearly wsat(n, F) < sat(n, F) as any F-saturated graph is also weakly F-saturated.

This study is devoted to finding the weak saturation number of certain graphs. Paper [7] considered sparse saturated
graphs, while paper [3] considered saturated r-uniform hypergraphs. The investigation of weakly saturated graphs was
initiated by Borowiecki and Sidorowicz [2]. In fact, a similar work has been provided by Pikhurko [8] one year earlier which
is about weakly saturated hypergraphs. Later, Sidorowicz [9] considered the size of weakly saturated graphs. Recently, ].
Faudree, R. Faudree and ]J. Schmitt [4] gave a survey of saturated graphs and more results are obtained by Faudree, Gould
and Jacobson [6]. Weak saturation numbers for many families of disjoint copies of connected graphs were determined by
Faudree and Gould [5]. Our research was motivated by the work of [5,6]. Paper [6] gives question 3. Is wsat (n, K; — Ky,;m)
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Fig. 1. Small order graphs.

= n(t—m—2)—%—(m+l)for2 < m < t—1?and question 4. Is wsat (n, K; —sK,) = <t;1)—s+(n—t+1)(t—3) for

1<s< %? Paper [5] gives 2n+k—3 < wsat(n, k(Ks—K3)) < 2n+2k—4 and question 1.For k > 2 and n sufficiently large,
for which connected graphs G, is wsat(n, kG) = wsat(n, G) + k — 1? In this paper, we determine wsat (n, Ky — Ky, ) which
completely answers the question 3 in paper [6]. We also give wsat (n, K; — K3) and wsat (n, K; — 2K>) which partially answer
the question 4 in paper [6]. Furthermore, we determine wsat (n, k(Ks — K5)), wsat (n, k(K; — K»)) and wsat (n, k(K; — K1,1m))
by the technique in [5]. That partially answers the question 1in [5].

2. Preliminary results

Fig. 1. shows the small order graphs of Propositions 1-3. Proposition 1 is the extension of Lemma 1 [6]. The techniques
used in Proposition 1 are the same as that in Lemma 1.

Lemma 1 ([6]). For n > 5, wsat(n, Ks — K3) = 2n — 2.
Proposition 1. For t > 5and n > t, wsat(n, K, — K;) = n(t — 3) — 9‘%.

Proof. Let L(n) = n(t — 3) — tz_%. We will show that if G € wSAT (n, K; — K3), then |E(G)| > L(n). Consider the graph
G € wSAT(n, K; — K3). When the first edge is added to G, it must create a new copy of K; — K,. This means there exists
a subgraph Hy C G, where V(Hg) = t, E(Hp) = (;) — 2. Since each edge of E(K;\Hp) added can generate a new copy of
K: — K>, Ho and the added edges form H;j (=K;). If there exists a vertex v € V(G\H;) which has at least t — 3 neighbors in
H;, then each edge from v, to the remaining vertices in Hj can be added to give a new copy of K; — K, and get Hy (=K;11). If
there exists a vertex v, € G\H} which has at least t — 3 neighbors in H, then each edge from v, to the remaining vertices
in H} can be added to get H; (=K;42).

Either this process is repeated n — t times, producing H,_,(=K;) and |[E(G)| > (n — t)(t — 3) + |E(Ho)| = L(n), or the
process terminates with a subgraph M (=K,;) with m < n, where |[E(M7 () G)| > L(m) and each vertex of G — M7 will have
at most t —4 neighbors in M. In order to give a new copy of K; — K; as the next edge added to G, there must exist a subgraph
H; C G, where Hy € M and |V (H,)| = t, |[E(H1)| = () — 2. All the edges of E(K,\H;) can be added to form H}*(=K,).
If there exists a vertex u; € G\H;* which has at least t — 3 neighbors in H{*, then each edge from u; to the remaining
vertices in H* can be added to get a new copy of K; — K; and get H;* (=K;+1). Continue this process until a complete graph
Hy7 . (=Kw) withm' < n is obtained where any vertex g € G\H,”_, | has at most ¢ — 4 neighbors in H;7_,_ ; (denoted
by M). In order to create a new copy of K; — K, between M; and M3, without loss of generality, one can assume that M; and
M3 have t — 4 vertices in common by selecting the correct starting subgraph H;. The two graphs M; and M will contain

m-+m’ — (t — 4) vertices and at most ([;4) edges in common of the original graph G. Thus, the two graphs M{ and M} will
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