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algorithms usually run in exponential time in the branchwidth and polynomial time in
the size of G. It is critical to compute the branchwidth and a branch-decomposition of
small width for a given graph in practical applications of these algorithms. It is known that
given a planar graph G and an integer 8, whether the branchwidth of G is at most 8 can be
Graph algorithms c!ecided in Q(nz) time, and an optimal brgnch—decomposition of Gcan l?e computed in O(1.13)
Branch-decomposition time. In this paper, we report the practical performance of the algorithms for computing
Planar graphs the branchwidth/branch-decomposition of planar G and the heuristics for improving the
Computational study algorithms.
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1. Introduction

The notions of branchwidth and branch-decomposition are introduced by Robertson and Seymour [23] and have
important algorithmic applications. Informally, a branch-decomposition of a graph G is a system of vertex cut sets of G
represented as links of a tree whose leaves are the edges of G. The width of a branch-decomposition is the maximum
cardinality of the vertex cut sets in the system. The branchwidth of G, denoted by bw(G), is the minimum width of all
possible branch-decompositions of G. The branchwidth bw(G) and the treewidth tw(G) of graph G are linearly related:
max{bw(G), 2} < tw(G) + 1 < max{ L%bw(G)J, 2} for every G with more than one edge. A graph G of small bw(G) (tw(G))
admits efficient dynamic programming algorithms for many NP-hard problems [2,5]. These algorithms have two major
steps: (1) compute a branch-/tree-decomposition of G and (2) apply a dynamic programming algorithm based on the de-
composition to solve the problem. Step (2) usually runs in polynomial time in the size of G and exponential time in the width
of the decomposition computed in Step (1). To apply branch-decomposition based algorithms in practice, it is important to
compute a branch-decomposition of small width efficiently.

Deciding the branchwidth/treewidth and computing a branch-/tree-decomposition of minimum width have received
much attention. Given an arbitrary graph G of n vertices and an integer B, it is NP-complete to decide whether bw(G) <
B [26] (tw(G) < B [1]).1f the branchwidth (treewidth) is upper-bounded by a constant then both the decision problem and
the optimal decomposition problem can be solved in O(n) time [6,7]. However, the constants behind the Big-Oh are huge
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and the linear time algorithms are mainly theoretically interesting. For arbitrary graphs, the best known approximation
factor in polynomial time is O(,/Tog B), where g is bw(G) or tw(G) [10]. Constant-factor 20PW(E) 0 (20(Ew(G) 0Dy tjime
algorithms for branchwidth/treewidth are given in [18,24].

For a planar graph G, the branchwidth and optimal branch-decomposition can be computed efficiently. Seymour and
Thomas give a rat-catching algorithm which decides whether bw(G) < g in O(n?) time and an edge-contraction algorithm
which computes an optimal branch-decomposition in O(n*) time [26]. An attractive feature of these algorithms is that there
is no huge hidden constant in the running time. Notice that it is open whether computing the treewidth is NP-complete or not
and the above algorithms are 1.5-approximation algorithms for the treewidth and optimal tree-decompositions of planar
graphs. Motivated by the results of Seymour and Thomas, branch-decompositions of planar graphs and their algorithmic
applications have received much attention. Readers may refer to the papers of [5,9,8,16] for extensive literature in the theory
and application of branch/tree-decompositions.

Computing an optimal branch-decomposition is a major step in branch-decomposition based algorithms for NP-hard
problems in planar graphs. The edge-contraction algorithm calls the rat-catching algorithm as a sub-routine O(n?) times
to construct an optimal branch-decomposition of a planar graph in 0(n*) time. Gu and Tamaki give an improved edge-
contraction algorithm which calls the rat-catching algorithm O(n) times to construct an optimal branch-decomposition of
a planar graph in 0(n®) time [13]. Hicks proposes a divide-and-conquer heuristic (called cycle method) to reduce the calls
of the rat-catching algorithm for computing optimal branch-decompositions of planar graphs [14,15]. In the worst case, the
cycle method has O(n*) running time, but in practice it is faster than the edge-contraction algorithm.! Hicks reports that the
edge-contraction algorithm and the cycle method can solve instances of about 2000 edges and 7000 edges, respectively, in
a practical time [14,15].

In this paper, we report practical progresses in computing optimal branch-decompositions of planar graphs. Because
all known algorithms for optimal branch-decompositions of planar graphs use the rat-catching algorithm as a subroutine,
the efficiency of the rat-catching algorithm is a key for computing optimal branch-decompositions of large planar graphs.
We report efficient implementations of the rat-catching algorithm. These implementations can compute the branchwidth of
planar graphs of size up to tens of thousand edges in a practical time. Using the efficient implementations of the rat-catching
algorithm, the edge-contraction algorithms can compute optimal branch-decompositions of planar graphs with up to 7,000
edges in a practical time by a computer with a CPU of about 3 GHz and a memory of 2 GByte.

One progress for improving the edge-contraction algorithms is a multiple edge-contraction heuristic to reduce the calls of
the rat-catching algorithm. The edge-contraction algorithms construct an optimal branch-decomposition of a planar graph
G by finding a sequence of contractible edges in the medial graph M(G) of G (the definition of M(G) is given in the next
section). Informally, an edge e of M (G) is contractible if the contraction of e in M (G) will produce a part of an optimal branch-
decomposition of G. The edge-contraction algorithms contract an edge e and then uses the rat-catching algorithm to check if
e is contractible. The multiple edge-contraction heuristic contracts multiple edges eq, ..., e, then checkifalleq, ..., e, are
contractible by one call of the rat-catching algorithm. In the worst case, the multiple edge-contraction heuristic has running
time O(n?), but is faster than the edge-contraction algorithms in practice. Using efficient implementations of the rat-catching
algorithm, the multiple edge-contraction heuristic can compute optimal branch-decompositions for some instances of size
up to 20,000 edges in a practical time.

We also introduce an improved cycle method. The cycle method proposed in [14,15] partitions G into subgraphs, finds
an optimal branch-decomposition of each subgraph recursively and combines the solutions of subgraphs into an optimal
branch-decomposition of G. The cycle method calls the rat-catching algorithm to check the branchwidth of each subgraph
at eachrecursive step. The cycle method is reported faster in practice than the edge-contraction algorithm of [26] by a factor
of 10-30 in average for a class of planar graphs (Delaunay triangulation instances) [15]. The improved cycle method uses
a better strategy to partition G into subgraphs and is faster than the edge-contraction algorithms of [26,13] by a factor of
200-300 for Delaunay triangulation instances of large size. Using efficient implementations of the rat-catching algorithm,
the improved cycle method can compute optimal branch-decompositions for some instances of size up to 50,000 edges in
a practical time.

The rest of the paper is organized as follows. Section 2 gives the preliminaries. We introduce the efficient implementations
of the rat-catching algorithm, the multiple edge-contraction heuristic, and the improved cycle method in Sections 3-5,
respectively. The final section concludes the paper.

2. Preliminaries

A graph G consists of a set V(G) of vertices and a multi-set E (G) of edges, where each edge e of E(G) is a subset of V(G)
with at most two elements. For aset A C E(G) of edges let V(A) = U,c4 e be the set of vertices in edges of A. We say a vertex
v and an edge e are incident to each other if v € e. We denote by deg(v) the number of edges in G incident to v and by
A(G) the largest deg(v) for all v € V(G). For a subset X € V(G), we denote by deg.(X) the number of edges in G incident

1 The cycle method uses the edge-contraction algorithm as a supplementary step. If the improved edge-contraction algorithm is used then the cycle
method has O(n?) running time.
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