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a b s t r a c t

The conjecture that every tree has a graceful labeling has inspired a lot of goodmathematics
since it was first articulated in 1967. By analyzing an algorithm whose essence is to run
through all n! graceful graphs on n + 1 vertices and select the trees, we prove that bn,
the number of all graceful labelings on trees on n edges, has growth at least as rapid as
O((n6)(

√
24)−n(n!)). Consequently the average number of graceful labelings for a tree on

n edges also grows superexponentially. We give a heuristic argument why bn/n! would be
expected to be O(nαβ−n) with β ≈ e/2 = 1.359 . . .. Empirically we show that β ≈ 1.575
based on published values of {bn}. By implementing the algorithmwe generated a database
consisting of the entire set of graceful labelings for all trees T on 16 or fewer edges, sorted
by T . Letting g(T ) denote the number of graceful labelings of a tree T , for each n ≤ 16
scatter diagrams reveal a close to linear relationship between ln(g(T )) and ln |Aut(T )|,
|Aut(T )| being the size of the automorphism group of T . For 10 ≤ n ≤ 16, linear regression
demonstrates that ln |Aut(T )| and just four other graph invariants account for over 96% of
the variance in ln(g(T )). For the 48,629 trees with n = 16, the root mean square error
in predicting ln(g(T )) is 0.236 whereas g(T ) ranges over seven orders of magnitude. A
simple criterion is developed to predict which trees have an exceptionally large number
of graceful labelings. Trees whose number of graceful labelings is exceptionally small fall
into two already known families of caterpillar graphs. Over the full set of graceful labelings
for a given n, the distribution of vertex degrees associated with each label is very close to
Poisson, with the exception of labels 0 and n. We present two new families of trees that
are proved not to be k-ubiquitously graceful. A variety of new questions suggested by the
results are given.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1967 Rosa [21] defined a ‘‘β-valuation’’ for a graph G on n edges to be a one-to-one labeling of its vertices, λ : V(G) →

{0, 1, . . . , n} with the property that when each edge (x, y) ∈ E(G) is assigned the ‘‘induced label’’ |λ(x) − λ(y)|, these edge
labels are distinct. Rosa recognized that a tree T with a β-valuation would also satisfy Ringel’s conjecture [19], viz. that the
complete graph K2n+1 can be edge-decomposed into non-overlapping copies of T . A ‘‘β-valuation’’ has come to be called a
‘‘graceful labeling’’ (henceforth ‘‘GL’’ in this article) and a graph which has one or more GL’s is ‘‘graceful’’.

The conjecture that every tree has a GL, the Ringel–Kotzig conjecture or ‘‘graceful tree conjecture’’ (GTC), has inspired
hundreds of articles yet remains open. Gallian [9] publishes annually a comprehensive overview of work done on this and
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other graph labeling problems, and one would be hard pressed to improve upon it. Earlier survey works by Edwards [7] and
by Alfalayleh et al. [3] provide an excellent introduction to the subject.

Progress toward constructing graceful labelings for specific trees continues to inch forward, with a large number of
tree types being known to be graceful mostly through clever ad hoc constructions. Some tree classes known to be graceful
have whimsical names such as olive trees [17], banana trees [22,23], and firecrackers [5]. Trees of diameter ≤7 are graceful
[29,11,27]. Using computers, GL’s have been found for all trees having 34 or fewer edges [8].

We take a different tack in this paper, focusing more on the big picture and less on individual trees. Let g(T ) denote the
number of GL’s of a tree T . We wondered whether any pattern might be found empirically for g(T ) beyond knowing that
it is not zero. A pattern would provide insight into how many labelings to expect and might, if it revealed a new family of
trees that have few GL’s, suggest a subset of trees in which to search for a counterexample. The total number of GL’s for all
trees on n edges, denoted here bn, has been computed for n ≤ 22 [15]. The computation utilized an ingenious application of
the matrix-tree theorem by Whitty [28]. Eyeballing the list suggests that bn grows faster than exponentially, which means
this would also be true for an ‘‘average’’ tree because the number of trees on n edges grows only exponentially with n [16].
We encounter the paradox (not an actual mathematical contradiction) that GL’s seem hard to find and it is often a struggle
to prove each tree of a particular type has even one GL, yet the total number of GL’s is huge. Where are all these GL’s?

The study described in this article approached the question of ‘‘where are the GL’s’’ from a database perspective. For
n ≤ 17wegenerated the complete set ofGL’s onn edges and treated the results as a database that could bemined for patterns
and insights or to answer specific questions. To obtain the database, we utilized an algorithm based on the association of
permutations with GL’s [24,26,1]. It will be described in detail in Section 3, but in essence it runs through the complete list of
n! graceful labelings, selecting those which are trees and saving them in a list. The list can subsequently be analyzed and the
tree represented by each entry can be identified. This waywe obtained all the g(T )’s for a particular n at once. The algorithm
can bemade highly efficient, andmanagement of the large data sets became a greater challenge than computation time.We
computed up to n = 17 but analyzed in detail only for n ≤ 16, figuring this was enough to reveal trends and to develop
questions about g(T ) that could inform future studies. Note that b16 is 67, 540, 932, 632 labelings.

In partial answer to ‘‘where are the GL’s’’, two tree families have previously been shown to exhibit at least exponential
growth for g(T ) as a function of n. For the n-edge path Pn, g(Pn)was shown to exceed (5/3)n byAldred [2], andAdamaszek [1]
has recently improved this lower bound to (2.37)n. Nowakowski and Whitehead [14] studied ‘‘ordered’’ GL’s of the 2-star,
i.e. the graph on 2k edges consisting of a central vertex v∗ with k copies of P2 emanating from it. Calling this graph St2(k),
they found 2k+1−2⌊(k+1)/3⌋ distinct ordered GL’s for St2(k), for k > 1. Consequently, for even n, g(St2(n/2)) has growth at
least O((21/6)n) = O((1.12)n). Ordered GL’s have the property that vertex labels alternately increase and decrease as one
travels along any path embedded in the tree. (For n = 2, 4, 6, . . . , 16 the actual g(St2(n/2)) values are: 2, 4, 10, 22, 50, 226,
1048, 4680. Nowakowski and Whitehead’s lower bound sequence grows much more slowly: 2, 2, 4, 8, 4, 8, 16, 8, . . ..)

We adopt the convention that n always denotes the number of edges andwe follow the above definition in that the vertex
label set is {0, 1, . . . , n}. Given a graph and an injective labeling, the notation ‘‘x ⌢ y’’ will signify ‘‘the vertex labeled x and
the vertex labeled y are connected by an edge’’. It is trivial that any graceful labeling has 0 ⌢ n since any other endpoint pair
induces a label smaller than n. Likewise to get the edge label n−1 requires either 0 ⌢ n−1 or 1 ⌢ n. Only one of these can
be true in any GL since edge label n−1must not occur twice. Given a GL λ, the labeling defined by λ̃(v) = n−λ(v) is easily
seen also to be graceful and we call it the complementary labeling of λ. Complementary labelings define a bijection between
the set of GL’s for which 0 ⌢ n − 1 and the set of GL’s for which 1 ⌢ n. As noted, for any tree this pair of sets is disjoint
and covers all of a tree’s GL’s. The expression ‘‘by complementarity’’ will be used as a shorthand for any straightforward
argument which relies on this bijection.

The interior, also called the ‘‘base’’ of a tree T , denoted T int, is obtained by removing the leaves of T . It is the full subtree on
the internal vertices. Of particular importance to the GTC is the ‘‘caterpillar’’, defined as a tree whose interior is a path. We
let C(n1, n2, . . . , np) denote the caterpillar whose central path has p vertices, call them v1, . . . , vp, with nj leaves attached
at vj. Note that its number of edges is n = p − 1 +

p
j=1 nj. There is a ‘‘standard’’ GL on a caterpillar [21], obtained by first

listing the vertices in the order v1 followed by its leaves then v2 followed by its leaves and so on. Put label n on v1, and then
give each vertex in the list either the lowest unused label (if attached to vi with i odd) or the highest unused label (if attached
to vi with i even). Because of complementarity and because one can start at either end of the caterpillar, this construction
defines four standard GL’s on a caterpillar unless the caterpillar is palindromic (i.e. aj = ap+1−j for 1 ≤ j ≤ p) in which case
there are just two standard GL’s.

A graph is called ‘‘k-ubiquitously graceful’’ (also called ‘‘k-rotatable’’) if for every vertex there is a graceful labeling which
assigns that vertex the label k. We will simplify the term ‘‘k-ubiquitously graceful’’ to k-ubiquitous. Van Bussel [25] found
that the family {C(m − 1, 0, n − m − 1)} (also describable as diameter-four trees with center vertex of degree 2) contains
a subfamily D consisting of non-0-ubiquitous members. For those trees, the center vertex v∗ cannot be labeled 0 in any
graceful labeling. Attaching a path at v∗ builds members of the family D ′ which are also non-0-ubiquitous, and van Bussel
conjectured that these are the only non-0-ubiquitous trees. We will review and simplify the criterion to belong to D in
Section 2.

One reason for studying non-k-ubiquitous graphs is that they show us structural patterns which preclude certain
labelings. We wondered if understanding these patterns might allow us to design a counterexample to the GTC or might
suggest a proof method if some of the patterns were mutually exclusive. We searched the database for non-k-ubiquitous
trees and found two new families, one for k > n/2 and the other for all odd k, but we did not find any new non-0-ubiquitous
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