ARTICLE IN PRESS

Discrete Applied Mathematics (

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Oriented coloring in planar, bipartite, bounded degree 3 acyclic oriented graphs

H. Coelho^{a,*}, L. Faria^b, S. Gravier^c, S. Klein^d

^a INF, UFG, and COPPE-Sistemas, UFRJ, Goiânia, GO, Brazil

^b DCC, UERJ, Rio de Janeiro, RJ, Brazil

^c Institut Fourier, Maths à Modeler team, CNRS - UJF, St Martin d'Hères, France

^d IM and COPPE-Sistemas, UFRJ, Rio de Janeiro, RJ, Brazil

ARTICLE INFO

Article history: Received 14 August 2013 Received in revised form 5 June 2015 Accepted 21 June 2015 Available online xxxx

Keywords: Oriented coloring Maximum degree 3 graph Planar graph Bipartite graph NP-complete

ABSTRACT

It has been a challenging problem to determine the smallest graph class where a problem is proved to be hard. In the literature, this has been pointed out to be very important in order to establish the real nature of a combinatorial problem.

An oriented *k*-coloring of an oriented graph $\vec{G} = (V, \vec{E})$ is a partition of *V* into *k* subsets such that there are no two adjacent vertices belonging to the same subset, and all the arcs between a pair of subsets have the same orientation. The decision problem $k - \text{ORIENTED CHROMATIC NUMBER (OCN_k)}$ consists of an oriented graph \vec{G} and an integer k > 0, plus the question if there exists an oriented *k*-coloring of \vec{G} . By its strong appeal, many papers have presented NP-completeness proofs for ocn_k. It was not known the complexity status of ocn_k when the input graph \vec{G} satisfies that the underlying graph *G* has maximum degree 3.

In this paper we prove that OCN_4 is NP-complete for an acyclic oriented graph \vec{G} such that G is at same time: connected, planar, bipartite, and with maximum degree 3.

Our result defines a P versus NP-complete dichotomy with respect to the maximum degree $\Delta(G)$: ocn_k is polynomial if $\Delta(G) < 3$ and NP-complete if $\Delta(G) \ge 3$, since it is known that ocn₃ is in P, and that ocn_k is in P when the underlying graph has $\Delta(G) \le 2$. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

A natural question when studying the complexity of a graph-theoretical decision problem is to determine for which special graph classes and upper bounds on the vertex degrees the problem remains NP-complete. Given a graph G = (V, E), the orientation of an edge $e = \{u, v\} \in E$ is one of the two possible ordered pairs uv or vu called arcs. An oriented graph $\vec{G} = (V, \vec{E})$ is obtained from G by orienting each edge of E, and \vec{G} is called an orientation of G. If $uv \in \vec{E}$, then we say that u and v are adjacent. If G is connected we say that \vec{G} is connected (the same for planar, and bipartite). The maximum degree of G is denoted by $\Delta(G)$ and we define $\Delta(\vec{G}) = \Delta(G)$. A digraph D = (V, A) is a pair, where V is a set of vertices, and A is a set of ordered pairs of distinct elements of V, called arcs. A tournament \vec{T}_n with n vertices is an orientation of the complete graph K_n . An oriented k-coloring of an oriented graph is a partition $(V_1, V_2, V_3, \ldots, V_k)$ of V into k subsets such that there are no two adjacent vertices belonging to the same subset, and all the arcs between a pair of subsets have the same orientation. The k-ORIENTED CHROMATIC NUMBER (OCN_k) was introduced by Courcelle [5] and then studied by Raspaud and Sopena [9].

* Corresponding author. *E-mail addresses*: hebert@inf.ufg.br (H. Coelho), luerbio@cos.ufrj.br (L. Faria), sylvain.gravier@ujf-grenoble.fr (S. Gravier), sula@cos.ufrj.br (S. Klein).

http://dx.doi.org/10.1016/j.dam.2015.06.023 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Please cite this article in press as: H. Coelho, et al., Oriented coloring in planar, bipartite, bounded degree 3 acyclic oriented graphs, Discrete Applied Mathematics (2015), http://dx.doi.org/10.1016/j.dam.2015.06.023

2

ARTICLE IN PRESS

 OCN_k -k-oriented chromatic number

INSTANCE: Oriented graph $\vec{G} = (V, \vec{E})$ and a positive integer *k*.

QUESTION: Is there an oriented *k*-coloring of \vec{G} ?

The oriented chromatic number $\chi_o(\vec{G})$ of an oriented graph \vec{G} is the smallest k such that \vec{G} admits an oriented k-coloring. Let $\vec{G_1}$ and $\vec{G_2}$ be two oriented graphs, a homomorphism of $\vec{G_1}$ to $\vec{G_2}$ is a mapping $f: V(G_1) \rightarrow V(G_2)$ such that $f(u)f(v) \in \vec{E}(\vec{G_2})$, whenever $uv \in \vec{E}(\vec{G_1})$. In this case, we say that $\vec{G_1}$ is $\vec{G_2}$ -colorable, that the vertices of $\vec{G_2}$ are the colors assigned to the vertices of $\vec{G_1}$, and that $\vec{G_2}$ is the color digraph of $\vec{G_1}$. Clearly, an oriented graph \vec{G} has an oriented k-coloring if and only if there is a tournament \vec{T}_k with k vertices, such that \vec{G} has a homomorphism to \vec{T}_k .

In the fundamental paper, Bang-Jensen, Hell and MacGillivray [1] proved that if \vec{T} is a tournament with at least two directed cycles, then it is NP-complete to decide whether a digraph \vec{G} has an homomorphism to \vec{T} . Klostermeyer and MacGillivray [8] proved in 2004 using [1], that OCN_4 is NP-complete. They established a P versus NP-complete dichotomy with respect to the number of colors k: OCN_k is polynomial if $k \leq 3$ and NP-complete if k > 3.

In 1978, Yannakakis [15] pointed out that from the algorithmic point of view it is important to determine the best possible bounds on the node-degree and constrained classes for which a decision problem remains NP-complete. Ries and de Werra studied in [10,11] coloring problems on mixed graphs and proved the complexity status of such problems in cubic, planar bipartite graphs.

By its strong appeal, ocn_k complexity has been exhaustively studied. Two recent papers have presented proofs for NP-completeness [6,7] both using the NP-complete problem 3-sat, each one trying to add some improvements in the previous results. In 2006, Culus and Demange [6] presented two results: that ocn_4 is NP-complete on acyclic oriented graphs with maximum degree $\Delta(G) = \max(p + 3; 6)$, and that ocn_4 is NP-complete on bipartite oriented graphs with maximum degree $\Delta(G) = \max(p + 3; 7)$, where *p* denotes the maximum number of occurrences of a literal. Most recently, in 2010, Ganian and Hliněný [7] got an improvement in the Culus and Demange acyclic result proving that ocn_4 is NP-complete for connected acyclic oriented graphs with maximum degree $\Delta(G) = \max(p + 2; 4)$. We notice that the complexity status of ocn_k is not known for oriented graphs with maximum degree $\Delta(G) = 3$.

In the present work, we prove that ocn_k remains NP-complete even when restricted to a connected, planar, bipartite and acyclic oriented graph \vec{G} with maximum degree $\Delta(G) = 3$. Our result also establishes a P versus NP-complete dichotomy of ocn_k with respect to the maximum degree $\Delta(G)$, since when $\Delta(G) \leq 2$, we know that ocn_k is a polynomial problem [12]. Hence, ocn_k is NP-complete if $\Delta(G) \geq 3$ and polynomial if $\Delta(G) \leq 2$. This NP-completeness result is obtained using the NP-complete problem [2,3]:

 $P3sat_{\overline{3}}$ -planar 3sat with at most 3 occurrences per variable

INSTANCE: Set *U* of variables and collection *C* of clauses over *U*, |U| = n and |C| = m, such that: (i) each clause $c \in C$ satisfies |c| = 3 or |c| = 2; (ii) each variable has 3 or 2 occurrences and each negative literal occurs once in *C*; (iii) the bipartite graph G = (V, E) is planar and connected, where $V = U \cup C$ and *E* contains the pairs (u, c) if and only if either *u* or \overline{u} belongs to clause *c*.

QUESTION: Is there a satisfying truth assignment for U satisfying all clauses of C?

An extended abstract was published [4] in: Proceedings of the VII Latin-American Algorithms, Graphs and Optimization Symposium, LAGOS'2013.

In the next section we construct the OCN_k instance $[\vec{G} = (V, \vec{E}), k]$ defined from I = (U, C) a P3sAT₃ instance.

2. The special instance $[\vec{G} = (V, \vec{E}), k]$ of OCN_k

Let $\vec{G} = (V, \vec{E})$ be an oriented graph and ϕ an oriented coloring of \vec{G} . We denote the vertices of \vec{G} by lower case letters and the color of ϕ by capital letters. Sometimes we depict a list of colors split by a bar "|" to represent the colors allowed for a vertex.

We use the component design technique. For this purpose, from an instance I = (U, C) of P3sAT₃, we construct for each variable u_i of U a *truth setting* \vec{T}_i and for each clause c_i of C a *satisfaction testing* \vec{S}_i .

Our truth Setting \vec{T}_i is made up from some copies of an oriented graph which we called *jellyfish* \vec{J}_i^d described by the vertex set $V(\vec{J}_i^d) = \{i_i^d, j_i^d, k_i^d, \ell_i^d, m_i^d, o_i^d, p_i^d, q_i^d, r_i^d, s_i^d, t_i^d, u_i^d, v_i^d, x_i^d\}$ and $\vec{E}(\vec{J}_i^d) = \{i_i^dk_i^d, j_i^di_i^d, k_i^dn_i^d, j_i^d\ell_i^d, m_i^d\ell_i^d, n_i^d\ell_i^d, \ell_i^do_i^d, m_i^d\ell_i^d, n_i^d\ell_i^d, n_i^d\ell_i^d,$

Lemma 2.1. If $\vec{G} = (V, \vec{E})$ contains \vec{J}_i^d as a subgraph, $\chi_o(\vec{G}) \leq 4$ and the colors A, T, B, F (not necessarily distinct) are respectively assigned to vertices o_i^d , p_i^d , q_i^d , r_i^d , then:

Download English Version:

https://daneshyari.com/en/article/6872017

Download Persian Version:

https://daneshyari.com/article/6872017

Daneshyari.com