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a b s t r a c t

Let G = (V , E) be a connected graph. A vertex v ∈ V is said to resolve two vertices x and
y if dG(v, x) ≠ dG(v, y). A set S ⊆ V is said to be a metric generator for G if any pair of
vertices of G is resolved by some element of S. A minimum cardinality metric generator
is called a metric basis, and its cardinality, dim(G), the metric dimension of G. A set S ⊆ V
is said to be a simultaneous metric generator for a graph family G = {G1,G2, . . . ,Gk},
defined on a common (labeled) vertex set, if it is a metric generator for every graph of
the family. A minimum cardinality simultaneous metric generator is called a simultaneous
metric basis, and its cardinality the simultaneous metric dimension of G. We obtain sharp
bounds for these invariants for general families of graphs and calculate closed formulae or
tight bounds for the simultaneousmetric dimension of several specific graph families. For a
given graph Gwe describe a process for obtaining a lower bound on themaximum number
of graphs in a family containingG that has simultaneousmetric dimension equal to dim(G).
It is shown that the problem of finding the simultaneous metric dimension of families of
trees is NP-hard. Sharp upper bounds for the simultaneous metric dimension of trees are
established. The problem of finding this invariant for families of trees that can be obtained
from an initial tree by a sequence of successive edge-exchanges is considered. For such
families of trees sharp upper and lower bounds for the simultaneous metric dimension are
established.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A generator of a metric space is a set S of points in the space with the property that every point of the space is uniquely
determined by its distances from the elements of S. Given a simple and connected graphG = (V , E), we consider the function
dG : V × V → N ∪ {0}, where dG(x, y) is the length of a shortest path between u and v and N is the set of positive integers.
Then (V , dG) is a metric space since dG satisfies (i) dG(x, x) = 0 for all x ∈ V , (ii) dG(x, y) = dG(y, x) for all x, y ∈ V and
(iii) dG(x, y) ≤ dG(x, z)+dG(z, y) for all x, y, z ∈ V . A vertex v ∈ V is said to resolve two vertices x and y if dG(v, x) ≠ dG(v, y).
A set S ⊆ V is said to be a metric generator for G if any pair of vertices of G is resolved by some element of S. A minimum
cardinality metric generator is called ametric basis, and its cardinality themetric dimension of G, denoted by dim(G).

Motivated by the problem of uniquely determining the location of an intruder in a network, by means of a set of devices
each of which can detect its distance to the intruder, the concepts of a metric generator and metric basis of a graph were
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Fig. 1. The set {v3, v4} is a simultaneous metric basis of {G1,G2,G3}. Thus, Sd(G1,G2,G3) = 2.

introduced by Slater in [22] where metric generators were called locating sets. Harary and Melter independently introduced
the same concept in [8], where metric generators were called resolving sets. Applications of the metric dimension to the
navigation of robots in networks are discussed in [16] and applications to chemistry in [4,13,14]. This invariant was studied
further in a number of other papers including, for instance [1,3–7,9–12,17–21,23].

The navigation problem proposed in [16] deals with the movement of a robot in a ‘‘graph space’’. The robot can locate
itself by the presence of distinctively labeled ‘‘landmarks’’ in the graph space. On a graph, there is neither the concept of
direction nor that of visibility. Instead, it was assumed in [16] that a robot navigating on a graph can sense the distances to
a set of landmarks. If the robot knows its distances to a sufficiently large number of landmarks, its position on the graph
is uniquely determined. This suggests the following problem: given a graph G, what are the fewest number of landmarks
needed, and where should they be located, so that the distances to the landmarks uniquely determine the robot’s position
on G? This problem is thus equivalent to determining the metric dimension and a metric basis of G.

In this article we consider the following extension of this problem. Suppose that the topology of the navigation network
may change within a range of possible graphs, say G1,G2, . . . ,Gk. This scenario may reflect the use of a dynamic network
whose links change over time, etc. In this case, the above mentioned problem becomes that of determining the minimum
cardinality of a set S of vertices which is simultaneously a metric generator for each graph Gi, i ∈ {1, . . . , k}. So, if S is
a solution to this problem, then the position of a robot can be uniquely determined by the distance to the elements of S,
regardless of the graph Gi that models the network along whose edges the robot moves at each moment.

On the other hand the graphs G1,G2, . . . ,Gk may also be the topologies of several communication networks on the same
set of nodes. These communication networks may, for example, operate at different frequencies. In this case a set S of nodes
that resolves each Gi would allow us to uniquely determine the location of an intruder into this family of networks.

Given a family G = {G1,G2, . . . ,Gk} of (not necessarily edge-disjoint) connected graphs Gi = (V , Ei) with common
vertex set V (the union of whose edge sets is not necessarily the complete graph), we define a simultaneous metric generator
for G to be a set S ⊆ V such that S is simultaneously a metric generator for each Gi. We say that a smallest simultaneous
metric generator for G is a simultaneous metric basis of G, and its cardinality the simultaneous metric dimension of G, denoted
by Sd(G) or explicitly by Sd(G1,G2, . . . ,Gk). An example is shown in Fig. 1 where {v3, v4} is a simultaneous metric basis of
{G1,G2,G3}.

The study of simultaneous parameters in graphs was introduced by Brigham and Dutton in [2], where they studied
simultaneous domination. This should not be confused with studies on families sharing a constant value on a parameter, for
instance the study presented in [11], where several graph families all of whose members have the same metric dimension
are studied.

We will use the notation Kn, Cn, Nn and Pn to denote a complete graph, a cycle, an empty graph, and a path of order n,
respectively. Let G be a graph and u, v vertices of G. We use u ∼ v to indicate that u is adjacent with v and u � v to indicate
that u is not adjacent with v. The diameter of a graph G, denoted byD(G), is themaximumdistance between a pair of vertices
in G. For the remainder of the paper, definitions will be introduced whenever a concept is needed.

2. General bounds

Observation 1. For any family G = {G1,G2, . . . ,Gk} of connected graphs with common vertex set V and any subfamily H of G,

Sd(H) ≤ Sd(G) ≤ min


|V | − 1,

k
i=1

dim(Gi)


.

In particular,

max
i∈{1,...,k}

{dim(Gi)} ≤ Sd(G).

The above inequalities are sharp. For instance, for the family of graphs shown in Fig. 1 we have Sd(G1,G2,G3) = 2 =

dim(G1) = dim(G2) = maxi∈{1,2,3}{dim(Gi)}, while for the family of graphs shown in Fig. 2 we have Sd(G1,G2,G3) = 3 =

|V | − 1.
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