On r-hued coloring of planar graphs with girth at least 6

Huimin Song ${ }^{\mathrm{a}, \mathrm{b}}$, Hong-Jian Lai ${ }^{\mathrm{c}, *}$, Jian-Liang Wu ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, Shandong University, Jinan 250100, China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Shandong University, Weihai 264209, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

ARTICLE INFO

Article history:

Received 27 January 2015
Received in revised form 5 May 2015
Accepted 10 May 2015
Available online xxxx

Keywords:

(k, r)-coloring
r-hued coloring
Girth
Planar graph

Abstract

For integers $k, r>0$, a (k, r)-coloring of a graph G is a proper k-coloring c such that for any vertex v with degree $d(v), v$ is adjacent to at least $\min \{d(v), r\}$ different colors. Such coloring is also called as an r-hued coloring. The r-hued chromatic number of $G, \chi_{r}(G)$, is the least integer k such that a (k, r)-coloring of G exists. In this paper, we proved that if G is a planar graph with girth at least 6 , then $\chi_{r}(G) \leq r+5$. This extends a former result in Bu and Zhu (2012). It also implies that a conjecture on r-hued coloring of planar graphs is true for planar graphs with girth at least 6 . © 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Undefined terminologies and notations are referred to [1]. Thus $\Delta(G), \delta(G)$, $g(G)$ and $\chi(G)$ denote the maximum degree, the minimum degree, the girth and the chromatic number of a graph G, respectively. When no confusion on G arises, we often use Δ for $\Delta(G)$. For $v \in V(G)$, let $N_{G}(v)$ be the set of vertices adjacent to v in $G, N_{G}[v]=N_{G}(v) \cup\{v\}$, and $d_{G}(v)=\left|N_{G}(v)\right|$. When G is understood from the context, the subscript G is often omitted in these notations.

Let k, r be integers with $k>0$ and $r>0$, and let $[k]=\{1,2, \ldots, k\}$. If $c: V(G) \mapsto[k]$ is a mapping, and if $V^{\prime} \subseteq V(G)$, then define $c\left(V^{\prime}\right)=\left\{c(v) \mid v \in V^{\prime}\right\}$. A (k, r)-coloring of a graph G is a mapping $c: V(G) \mapsto[k]$ satisfying both the following.
(C1) $c(u) \neq c(v)$ for every edge $u v \in E(G)$;
(C2) $\left|c\left(N_{G}(v)\right)\right| \geq \min \left\{d_{G}(v), r\right\}$ for any $v \in V(G)$.
The condition (C2) is often referred to as the r-hued condition. Such coloring is also called as an r-hued coloring. For a fixed integer $r>0$, the r-hued chromatic number of G, denoted by $\chi_{r}(G)$, is the smallest integer k such that G has a (k, r) coloring. The concept was first introduced in [10] and [6], where $\chi_{2}(G)$ was called the dynamic chromatic number of G. The study of r-hued-colorings can be traced a bit earlier, as the square coloring of a graph is the special case when $r=\Delta$.

By the definition of $\chi_{r}(G)$, it follows immediately that $\chi(G)=\chi_{1}(G)$, and $\chi_{\Delta}(G)=\chi\left(G^{2}\right)$, where G^{2} is the square graph of G. Thus r-hued coloring is a generalization of the classical vertex coloring. For any integer $i>j>0$, any (k, i)-coloring of G is also a (k, j)-coloring of G, and so

$$
\chi(G) \leq \chi_{2}(G) \leq \cdots \leq \chi_{r}(G) \leq \cdots \leq \chi_{\Delta}(G)=\chi_{\Delta+1}(G)=\cdots=\chi\left(G^{2}\right)
$$

[^0]http://dx.doi.org/10.1016/j.dam.2015.05.015
0166-218X/© 2015 Elsevier B.V. All rights reserved.

In [9], it was shown that (3, 2)-colorability remains NP-complete even when restricted to planar bipartite graphs with maximum degree at most 3 and with arbitrarily high girth. This differs considerably from the well-known result that the classical 3-colorability is polynomially solvable for graphs with maximum degree at most 3.

The r-hued chromatic numbers of some classes of graphs are known. For example, the r-hued chromatic numbers of complete graphs, cycles, trees and complete bipartite graphs have been determined in [5]. In [6], an analogue of Brooks Theorem for χ_{2} was proved. It was shown in [3] that $\chi_{2}(G) \leq 5$ holds for any planar graph G. A Moore graph is a regular graph with diameter d and girth $2 d+1$. Ding et al. [4] proved that $\chi_{r}(G) \leq \Delta^{2}+1$, where equality holds if and only if G is a Moore graph, which was improved to $r \Delta+1$ in [8]. Wegner [12] conjectured that if G is a planar graph, then

$$
\chi_{\Delta}(G)= \begin{cases}\Delta(G)+5, & \text { if } 4 \leq \Delta(G) \leq 7 \\ \lfloor 3 \Delta(G) / 2\rfloor+1, & \text { if } \Delta(G) \geq 8\end{cases}
$$

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by edge contraction, and G is called H-minor free if G does not have H as a minor.

Define

$$
K(r)= \begin{cases}r+3, & \text { if } 2 \leq r \leq 3 \\ \lfloor 3 r / 2\rfloor+1, & \text { if } r \geq 4\end{cases}
$$

Lih et al. proved the following towards Wegner's conjecture.
Theorem 1.1 (Lih et al. [7]). Let G be a K_{4}-minor free graph. Then

$$
\chi_{\Delta}(G) \leq K(\Delta(G))
$$

Song et al. extended this result by proving the following theorem. Theorem 1.1 is the special case when $r=\Delta$ of Theorem 1.2.

Theorem 1.2 (Song et al. [11]). Let G be a K_{4}-minor free graph. Then $\chi_{r}(G) \leq K(r)$.
A conjecture similar to the above-mentioned Wegner's conjecture is proposed in [11].
Conjecture 1.3. Let G be a planar graph. Then

$$
\chi_{r}(G) \leq \begin{cases}r+3, & \text { if } 1 \leq r \leq 2 \\ r+5, & \text { if } 3 \leq r \leq 7 \\ \lfloor 3 r / 2\rfloor+1, & \text { if } r \geq 8\end{cases}
$$

In this paper, we prove the following theorem.
Theorem 1.4. If $r \geq 3$ and G is a planar graph with $g(G) \geq 6$, then $\chi_{r}(G) \leq r+5$.
When $r \geq 8$, we have $r+5 \leq\lfloor 3 r / 2\rfloor+1$. Thus Theorem 1.4, together with Theorem 1.1 of [3] with $1 \leq r \leq 2$, justifies Conjecture 1.3 for all planar graphs with girth at least 6 . Bu and Zhu in [2] proved the special case when $r=\Delta$ of Theorem 1.4, and so Theorem 1.4 is a generalization of this former result in [2].

2. Notations and terminology

Let G denote a planar graph embedded on the plane and $k>0$ be an integer. We use $F(G)$ to denote the set of all faces of this plane graph G. For a face $f \in F(G)$, if v is a vertex on f (or if e is an edge on f, respectively), then we say that v (or e, respectively) is incident with f. The number of edges incident with f is denoted by $d_{G}(f)$, where each cut edge counts twice. A face f of G is called a k-face (or a k^{+}-face, respectively) if $d_{G}(f)=k$ (or $d_{G}(f) \geq k$, respectively). A vertex of degree k (at least k, at most k, respectively) in G is called a k-vertex (k^{+}-vertex, k^{-}-vertex, respectively). We use $n_{i}(v)$ to denote the number of i-vertices adjacent to v.

For two vertices $u, w \in V(G)$, we say that u and w are weak-adjacent if there is a 2-vertex v such that $u, w \in N_{G}(v)$. A 3 -vertex v is a weak 3-vertex if v is adjacent to a 2 -vertex. The neighbors of a weak 3 -vertex are called star-adjacent. If a 5 -vertex is weak-adjacent to five 5 -vertices, we call it a bad vertex. (As an example, see the vertex v in H_{4} of Fig. 2). If a 5 -vertex is adjacent to one weak 3-vertex and is weak-adjacent to four other 5 -vertices, we call it a semi-bad type vertex. As Fig. 2 demonstrates, the vertex v in H_{5} is a semi-bad type vertex.

Let G be a graph with $V=V(G)$, and let $V^{\prime} \subseteq V$ be a vertex subset. As in [1], $G\left[V^{\prime}\right]$ is the subgraph of G induced by V^{\prime}. A mapping $c: V^{\prime} \rightarrow[k]$ is a partial (k, r)-coloring of G if c is a (k, r)-coloring of $G\left[V^{\prime}\right]$. The subset V^{\prime} is the support of the partial (k, r)-coloring c. The support of c is denoted by $S(c)$. If c_{1}, c_{2} are two partial (k, r)-colorings of G such that $S\left(c_{1}\right) \subseteq S\left(c_{2}\right)$ and such that for any $v \in S\left(c_{1}\right), c_{1}(v)=c_{2}(v)$, then we say that c_{2} is an extension of c_{1}. Given a partial (k, r)-coloring c on $V^{\prime} \subset V(G)$, for each $v \in V-V^{\prime}$, define $\{c(v)\}=\emptyset$; and for every vertex $v \in V$, we extend the definition of $c\left(N_{G}(v)\right)$ by setting $c\left(N_{G}(v)\right)=\cup_{z \in N_{G}(v)}\{c(z)\}$, and define

$$
c[v]= \begin{cases}\{c(v)\}, & \text { if }\left|c\left(N_{G}(v)\right)\right| \geq r \tag{1}\\ \{c(v)\} \cup c\left(N_{G}(v)\right), & \text { otherwise } .\end{cases}
$$

https://daneshyari.com/en/article/6872067

Download Persian Version:

https://daneshyari.com/article/6872067

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hmsong@sdu.edu.cn (H. Song), hongjianlai@gmail.com (H.-J. Lai).

