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a b s t r a c t

For integers k, r > 0, a (k, r)-coloring of a graph G is a proper k-coloring c such that for
any vertex v with degree d(v), v is adjacent to at least min{d(v), r} different colors. Such
coloring is also called as an r-hued coloring. The r-hued chromatic number of G, χr (G), is the
least integer k such that a (k, r)-coloring of G exists. In this paper, we proved that if G is a
planar graph with girth at least 6, then χr (G) ≤ r + 5. This extends a former result in Bu
and Zhu (2012). It also implies that a conjecture on r-hued coloring of planar graphs is true
for planar graphs with girth at least 6.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Undefined terminologies and notations are referred to [1]. Thus ∆(G), δ(G),
g(G) and χ(G) denote the maximum degree, the minimum degree, the girth and the chromatic number of a graph G,
respectively. When no confusion on G arises, we often use ∆ for ∆(G). For v ∈ V (G), let NG(v) be the set of vertices adjacent
to v in G,NG[v] = NG(v)∪{v}, and dG(v) = |NG(v)|. When G is understood from the context, the subscript G is often omitted
in these notations.

Let k, r be integers with k > 0 and r > 0, and let [k] = {1, 2, . . . , k}. If c : V (G) → [k] is a mapping, and if V ′
⊆ V (G),

then define c(V ′) = {c(v)|v ∈ V ′
}. A (k, r)-coloring of a graph G is a mapping c : V (G) → [k] satisfying both the following.

(C1) c(u) ≠ c(v) for every edge uv ∈ E(G);
(C2) |c(NG(v))| ≥ min{dG(v), r} for any v ∈ V (G).

The condition (C2) is often referred to as the r-hued condition. Such coloring is also called as an r-hued coloring. For a
fixed integer r > 0, the r-hued chromatic number of G, denoted by χr(G), is the smallest integer k such that G has a (k, r)-
coloring. The concept was first introduced in [10] and [6], where χ2(G) was called the dynamic chromatic number of G. The
study of r-hued-colorings can be traced a bit earlier, as the square coloring of a graph is the special case when r = ∆.

By the definition of χr(G), it follows immediately that χ(G) = χ1(G), and χ∆(G) = χ(G2), where G2 is the square graph
of G. Thus r-hued coloring is a generalization of the classical vertex coloring. For any integer i > j > 0, any (k, i)-coloring of
G is also a (k, j)-coloring of G, and so

χ(G) ≤ χ2(G) ≤ · · · ≤ χr(G) ≤ · · · ≤ χ∆(G) = χ∆+1(G) = · · · = χ(G2).
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In [9], it was shown that (3, 2)-colorability remains NP-complete even when restricted to planar bipartite graphs with
maximum degree at most 3 and with arbitrarily high girth. This differs considerably from the well-known result that the
classical 3-colorability is polynomially solvable for graphs with maximum degree at most 3.

The r-hued chromatic numbers of some classes of graphs are known. For example, the r-hued chromatic numbers of
complete graphs, cycles, trees and complete bipartite graphs have been determined in [5]. In [6], an analogue of Brooks
Theorem for χ2 was proved. It was shown in [3] that χ2(G) ≤ 5 holds for any planar graph G. A Moore graph is a regular
graph with diameter d and girth 2d + 1. Ding et al. [4] proved that χr(G) ≤ ∆2

+ 1, where equality holds if and only if G is
a Moore graph, which was improved to r∆ + 1 in [8]. Wegner [12] conjectured that if G is a planar graph, then

χ∆(G) =


∆(G) + 5, if 4 ≤ ∆(G) ≤ 7;
⌊3∆(G)/2⌋ + 1, if ∆(G) ≥ 8.

A graph G has a graphH as aminor ifH can be obtained from a subgraph of G by edge contraction, and G is calledH-minor
free if G does not have H as a minor.

Define

K(r) =


r + 3, if 2 ≤ r ≤ 3;
⌊3r/2⌋ + 1, if r ≥ 4.

Lih et al. proved the following towards Wegner’s conjecture.

Theorem 1.1 (Lih et al. [7]). Let G be a K4-minor free graph. Then

χ∆(G) ≤ K(∆(G)).

Song et al. extended this result by proving the following theorem. Theorem 1.1 is the special case when r = ∆ of
Theorem 1.2.

Theorem 1.2 (Song et al. [11]). Let G be a K4-minor free graph. Then χr(G) ≤ K(r).

A conjecture similar to the above-mentioned Wegner’s conjecture is proposed in [11].

Conjecture 1.3. Let G be a planar graph. Then

χr(G) ≤


r + 3, if 1 ≤ r ≤ 2
r + 5, if 3 ≤ r ≤ 7;
⌊3r/2⌋ + 1, if r ≥ 8.

In this paper, we prove the following theorem.

Theorem 1.4. If r ≥ 3 and G is a planar graph with g(G) ≥ 6, then χr(G) ≤ r + 5.

When r ≥ 8, we have r + 5 ≤ ⌊3r/2⌋ + 1. Thus Theorem 1.4, together with Theorem 1.1 of [3] with 1 ≤ r ≤ 2,
justifies Conjecture 1.3 for all planar graphs with girth at least 6. Bu and Zhu in [2] proved the special case when r = ∆ of
Theorem 1.4, and so Theorem 1.4 is a generalization of this former result in [2].

2. Notations and terminology

Let G denote a planar graph embedded on the plane and k > 0 be an integer. We use F(G) to denote the set of all faces
of this plane graph G. For a face f ∈ F(G), if v is a vertex on f (or if e is an edge on f , respectively), then we say that v (or
e, respectively) is incident with f . The number of edges incident with f is denoted by dG(f ), where each cut edge counts
twice. A face f of G is called a k-face (or a k+-face, respectively) if dG(f ) = k (or dG(f ) ≥ k, respectively). A vertex of degree
k (at least k, at most k, respectively) in G is called a k-vertex (k+-vertex, k−-vertex, respectively). We use ni(v) to denote the
number of i-vertices adjacent to v.

For two vertices u, w ∈ V (G), we say that u and w are weak-adjacent if there is a 2-vertex v such that u, w ∈ NG(v).
A 3-vertex v is a weak 3-vertex if v is adjacent to a 2-vertex. The neighbors of a weak 3-vertex are called star-adjacent. If
a 5-vertex is weak-adjacent to five 5-vertices, we call it a bad vertex. (As an example, see the vertex v in H4 of Fig. 2). If a
5-vertex is adjacent to one weak 3-vertex and is weak-adjacent to four other 5-vertices, we call it a semi-bad type vertex.
As Fig. 2 demonstrates, the vertex v in H5 is a semi-bad type vertex.

Let G be a graph with V = V (G), and let V ′
⊆ V be a vertex subset. As in [1], G[V ′

] is the subgraph of G induced by V ′. A
mapping c : V ′

→ [k] is a partial (k, r)-coloring of G if c is a (k, r)-coloring of G[V ′
]. The subset V ′ is the support of the partial

(k, r)-coloring c. The support of c is denoted by S(c). If c1, c2 are two partial (k, r)-colorings of G such that S(c1) ⊆ S(c2)
and such that for any v ∈ S(c1), c1(v) = c2(v), then we say that c2 is an extension of c1. Given a partial (k, r)-coloring c on
V ′

⊂ V (G), for each v ∈ V − V ′, define {c(v)} = ∅; and for every vertex v ∈ V , we extend the definition of c(NG(v)) by
setting c(NG(v)) = ∪z∈NG(v){c(z)}, and define

c[v] =


{c(v)}, if |c(NG(v))| ≥ r;
{c(v)} ∪ c(NG(v)), otherwise.

(1)
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