Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

A note on equidistant subspace codes

D[a](#page-0-0)niele Bartoli^a, Francesco Pavese ^{[b,](#page-0-1)}*

^a *Department of Mathematics, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium*

^b *Dipartimento di Matematica, Informatica ed Economia, University of Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy*

a r t i c l e i n f o

Article history: Received 26 January 2015 Received in revised form 18 May 2015 Accepted 21 June 2015 Available online 9 July 2015

Keywords: Equidistant subspace code Hyperbolic quadric

a b s t r a c t

Equidistant subspace codes are studied. A classification of the largest 1-intersecting codes in PG(5, 2), whose codewords are planes, is provided. Also, new constructions of large equidistant codes are presented.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let *V* be an *r*-dimensional vector space over GF(*q*), *q* any prime power. The set *S*(*V*) of all subspaces of *V*, or subspaces of the projective space PG(*V*), forms a metric space with respect to the *subspace distance* defined by $d_s(U, U') = \dim(U +$ U') – dim($U \cap U'$). In the context of subspace codes, the main problem is to determine the largest possible size of codes in the space (*S*(*V*), *ds*) with a given minimum distance, and to classify the corresponding optimal codes. The interest in these codes is a consequence of the fact that codes in the projective space and codes in the Grassmannian over a finite field referred to as subspace codes and constant-dimension codes, respectively, have been proposed for error control in random linear network coding, see [\[24\]](#page--1-0). For general results on bounds and constructions of constant-dimension subspaces codes, see [\[5](#page--1-1)[,6](#page--1-2)[,13–17](#page--1-3)[,22,](#page--1-4)[23](#page--1-5)[,28,](#page--1-6)[30\]](#page--1-7).

In this note we are interested in equidistant constant-dimension subspace codes. An *equidistant constant-dimension subspace code* or *t-intersecting code*, is a collection C of (*k* − 1)-dimensional projective subspaces of PG(*r* − 1, *q*) mutually intersecting in a (*t* − 1)-dimensional projective space, where *t* < *k*. The largest equidistant constant-dimension subspace code is said to be *optimal*. In this context interesting constructions of such codes were given in [\[12,](#page--1-8)[18](#page--1-9)[,19\]](#page--1-10). An important concept in this context is the sunflower. A *sunflower* δ is a *t*-intersecting code in which any two elements of δ intersect in the same (*t* − 1)-dimensional projective space. For a code C we define C [⊥] as the code which consists of the dual subspaces of C. Then it is easily seen that C is a *t*-intersecting code, whose codewords are (*k* − 1)-dimensional projective subspaces if and only if $C^{\perp} = \{X^{\perp} \mid X \in C\}$ is an $(r-2k+t)$ -intersecting code, whose codewords are $(r-k-1)$ -dimensional projective subspaces.

As noted in [\[12\]](#page--1-8), a known upper bound in coding theory $[9,10]$ $[9,10]$, can be adapted for equidistant constant-dimension subspace codes obtaining that if a *t*-intersecting code, whose codewords are (*k* − 1)-dimensional projective subspaces, has more than $\left(\frac{q^k-q^t}{q-1}\right)$ *q*−1 $\int^2 + \frac{q^k-q^t}{q-1} + 1$ codewords, then the code is a sunflower. Therefore, if *r* is large enough, an optimal equidistant constant-dimension subspace code is a sunflower.

∗ Corresponding author. *E-mail addresses:* dbartoli@cage.ugent.be (D. Bartoli), francesco.pavese@unibas.it (F. Pavese).

<http://dx.doi.org/10.1016/j.dam.2015.06.017> 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Note

On the other hand a conjecture, attributed to Deza, states that if a *t*-intersecting code, whose codewords are (*k* − 1) dimensional projective subspaces, has more than $|PG(k, q)|$ codewords, then the code is a sunflower. In [\[12\]](#page--1-8), the authors exhibit a set of sixteen planes in PG(5, 2) mutually intersecting in a point that therefore is a counterexample to Deza's Conjecture. In Section [2](#page-1-0) we prove that the maximum number of planes in PG(5, 2) mutually intersecting in a point is twenty. We also provide an example and prove that such a family is unique up to collineations. Notice that in [\[1\]](#page--1-13) a classification of optimal 1-intersecting codes in $PG(5, q)$, $q > 2$, whose codewords are planes, was obtained.

In Section [3](#page--1-14) constructions of large equidistant constant-dimension subspace codes from subspaces of constant rank matrices are discussed.

2. Optimal non-sunflower equidistant codes

In PG(5, *q*) a *Klein quadric* is the set of singular points for some non-degenerate quadratic form of hyperbolic type defined on the underlying vector space. The projective spaces of maximal dimension contained in a Klein quadric are planes and are also called *generators*. The set of all generators of a Klein quadric is divided into two distinct subsets of the same size, called *systems of generators*. Two distinct generators from the same system meet in a point, two generators from different systems meet either in a line or they are disjoint. See [\[20\]](#page--1-15) for more details.

In [\[1\]](#page--1-13) the authors considered set of planes of a projective space with the property that any two of them intersect in exactly a point. Their main result is the following:

Theorem 2.1. *Let* C *be a set of planes in* PG(5, *q*) *mutually intersecting in a point, spanning* PG(5, *q*) *and that is not a sunflower. If* $q\geq 3$ *and* $|{\cal C}|\geq 3(q^2+q+1)$ *, then* ${\cal C}$ *is a subset of the* $(q+1)(q^2+1)$ *planes forming a system of generators of a Klein quadric.*

In other words they proved that, if $q > 2$, an optimal 1-intersecting code in PG(5, q), whose codewords are planes, is a system of generators of a Klein quadric. Moreover, they also proved that no larger 1-intersecting code in PG(*d*, *q*), whose codewords are planes, spanning $PG(d, q)$ and that is not a sunflower, exists whenever $d > 6$. In the remaining part of this section we deal with the case $q = 2$.

Theorem 2.2. Let C be a set of s planes in PG(r , 2), with $s > 19$, which is not a sunflower. Then C is contained in PG(5 , 2).

Proof. Let *P* be a point belonging to a plane of *C*. Since we are supposing that *C* is not a sunflower, then there exists a plane π of C not passing through *P*. This implies that the maximum number of planes through *P* is 7, since all these planes must intersect π in distinct points. If there was no point contained in more than three planes, then the total number of planes is at most $7 \times 2 + 1 = 15$. Therefore there exists at least a point P_0 contained in at least four planes. In the following we will denote with $\bar{\tau}$ or τ_i any plane through P_0 and with σ_i or σ any plane not containing P_0 . Note that any two planes τ_i span a 4-space, otherwise they would have a line in common. We will denote the points P_i as the points having, in homogeneous coordinates, all zeros and 1 in position *i*. We distinguish several cases.

(1) dim($\langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle$) = 4. First of all notice that in this case all the planes σ_i must be contained in $\Pi_4 = \langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle$. Suppose now that there exists a plane $\tau_{\tilde{i}}\not\subset\Pi_4$. Since it must meet all the planes σ_j , it meets Π_4 in a line $\tau_{\tilde{i}}\cap\Pi_4=$ $\ell = \{P_0, Q, R\}$. We already know that at most six planes σ_i pass through Q and at most six planes σ_i pass through R, other than τ*ⁱ* . Moreover, any plane σ*^j* must intersect τ*ⁱ* either in *Q* or in *R*, since it is contained in Π4. The total number of planes σ*^j* is then 12; the number of planes τ*ⁱ* is 7 and therefore the maximum number of planes of C in this case is $12 + 7 = 19$. Since we are supposing that the number of planes of C is at least 20, this is a contradiction. Then all the planes τ_i are subsets of Π_4 .

We now claim that there exists no $\tau \notin \{\tau_1, \tau_2, \tau_3, \tau_4\}$ passing through P_0 . Assume for contradiction that there exists a plane τ such that $\tau \notin \{\tau_1, \tau_2, \tau_3, \tau_4\}$ which passes through P_0 . Then τ , τ_1 , τ_2 , τ_3 , τ_4 partition $\Pi_4 \setminus \{P_0\}$. A plane σ not through P_0 intersects at least one among τ , τ_1 , τ_2 , τ_3 , τ_4 in a line. This is impossible. Then the unique planes through P_0 are τ_1 , τ_2 , τ_3 , τ_4 . The same argument holds for each point of Π_4 . Therefore through each point there pass no more than 4 planes. This means that the maximum number of planes of this configuration is

$$
\frac{31\times4}{7}<18.
$$

- (2) $\dim(\langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle) = 5$. Let $\Pi_5 = \langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle$. Arguing as before, if there was $\tau_{\tilde{i}} \not\subset \Pi_5$, then $\tau_{\tilde{i}} \cap \Pi_5 = \ell = \{P_0, Q, R\}$ and at most six planes σ*^j* pass through *Q* and at most six planes σ*^j* pass through *R*, other than τ*ⁱ* . Since any plane σ*^j* must be contained in Π5, then it must intersect τ*ⁱ* either in *Q* or in *R*. Therefore the maximum number of planes in this case is $12 + 7 = 19$. Since by hypothesis the number of the planes is greater than 19, then all the planes through P_0 must be contained in Π_5 . Also, any plane σ_j is contained in Π_5 .
- (3) dim($\langle \tau_1, \tau_2, \tau_3, \tau_4 \rangle$) = 6.
	- (a) Suppose that $\forall i_1, i_2, i_3 \in \{1, 2, 3, 4\}$ dim $(\langle \tau_{i_1}, \tau_{i_2}, \tau_{i_3} \rangle) = 6$. Consider a plane $\sigma_j = \langle Q_1, Q_2, Q_3 \rangle$, where $Q_k \in \tau_{i_k}$, $k=1,2,3$. Clearly, Q_1,Q_2,Q_3 are in general position, since $\tau_{i_1},\tau_{i_2},\tau_{i_3}$ generate a space of dimension 6. Let $\overline{\tau}\in$ $\{\tau_1,\tau_2,\tau_3,\tau_4\}\setminus\{\tau_{i_1},\tau_{i_2},\tau_{i_3}\}\.$ By assumption, every three planes among $\tau_1,\tau_2,\tau_3,\tau_4$ generate a space of dimension 6,

Download English Version:

<https://daneshyari.com/en/article/6872078>

Download Persian Version:

<https://daneshyari.com/article/6872078>

[Daneshyari.com](https://daneshyari.com)