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a b s t r a c t

Equidistant subspace codes are studied. A classification of the largest 1-intersecting codes
in PG(5, 2), whose codewords are planes, is provided. Also, new constructions of large
equidistant codes are presented.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let V be an r-dimensional vector space over GF(q), q any prime power. The set S(V ) of all subspaces of V , or subspaces
of the projective space PG(V ), forms a metric space with respect to the subspace distance defined by ds(U,U ′) = dim(U +

U ′) − dim(U ∩ U ′). In the context of subspace codes, the main problem is to determine the largest possible size of codes
in the space (S(V ), ds) with a given minimum distance, and to classify the corresponding optimal codes. The interest in
these codes is a consequence of the fact that codes in the projective space and codes in the Grassmannian over a finite field
referred to as subspace codes and constant-dimension codes, respectively, have been proposed for error control in random
linear network coding, see [24]. For general results on bounds and constructions of constant-dimension subspaces codes,
see [5,6,13–17,22,23,28,30].

In this note we are interested in equidistant constant-dimension subspace codes. An equidistant constant-dimension
subspace code or t-intersecting code, is a collection C of (k − 1)-dimensional projective subspaces of PG(r − 1, q) mutually
intersecting in a (t − 1)-dimensional projective space, where t < k. The largest equidistant constant-dimension subspace
code is said to be optimal. In this context interesting constructions of such codes were given in [12,18,19]. An important
concept in this context is the sunflower. A sunflower S is a t-intersecting code in which any two elements of S intersect in
the same (t − 1)-dimensional projective space. For a code C we define C⊥ as the code which consists of the dual subspaces
of C. Then it is easily seen that C is a t-intersecting code, whose codewords are (k− 1)-dimensional projective subspaces if
and only ifC⊥

= {X⊥
| X ∈ C} is an (r−2k+ t)-intersecting code, whose codewords are (r−k−1)-dimensional projective

subspaces.
As noted in [12], a known upper bound in coding theory [9,10], can be adapted for equidistant constant-dimension

subspace codes obtaining that if a t-intersecting code, whose codewords are (k − 1)-dimensional projective subspaces,

has more than


qk−qt

q−1

2
+

qk−qt

q−1 + 1 codewords, then the code is a sunflower. Therefore, if r is large enough, an optimal
equidistant constant-dimension subspace code is a sunflower.
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On the other hand a conjecture, attributed to Deza, states that if a t-intersecting code, whose codewords are (k − 1)-
dimensional projective subspaces, has more than |PG(k, q)| codewords, then the code is a sunflower. In [12], the authors
exhibit a set of sixteen planes in PG(5, 2) mutually intersecting in a point that therefore is a counterexample to Deza’s
Conjecture. In Section 2we prove that themaximumnumber of planes in PG(5, 2)mutually intersecting in a point is twenty.
We also provide an example and prove that such a family is unique up to collineations. Notice that in [1] a classification of
optimal 1-intersecting codes in PG(5, q), q > 2, whose codewords are planes, was obtained.

In Section 3 constructions of large equidistant constant-dimension subspace codes from subspaces of constant rank
matrices are discussed.

2. Optimal non-sunflower equidistant codes

In PG(5, q) a Klein quadric is the set of singular points for some non-degenerate quadratic form of hyperbolic type defined
on the underlying vector space. The projective spaces of maximal dimension contained in a Klein quadric are planes and are
also called generators. The set of all generators of a Klein quadric is divided into two distinct subsets of the same size, called
systems of generators. Two distinct generators from the same systemmeet in a point, two generators from different systems
meet either in a line or they are disjoint. See [20] for more details.

In [1] the authors considered set of planes of a projective spacewith the property that any two of them intersect in exactly
a point. Their main result is the following:

Theorem 2.1. Let C be a set of planes in PG(5, q)mutually intersecting in a point, spanning PG(5, q) and that is not a sunflower.
If q ≥ 3 and |C| ≥ 3(q2 + q + 1), then C is a subset of the (q + 1)(q2 + 1) planes forming a system of generators of a Klein
quadric.

In other words they proved that, if q > 2, an optimal 1-intersecting code in PG(5, q), whose codewords are planes, is a
system of generators of a Klein quadric. Moreover, they also proved that no larger 1-intersecting code in PG(d, q), whose
codewords are planes, spanning PG(d, q) and that is not a sunflower, exists whenever d ≥ 6. In the remaining part of this
section we deal with the case q = 2.

Theorem 2.2. Let C be a set of s planes in PG(r, 2), with s > 19, which is not a sunflower. Then C is contained in PG(5, 2).

Proof. Let P be a point belonging to a plane of C. Since we are supposing that C is not a sunflower, then there exists a plane
π of C not passing through P . This implies that the maximum number of planes through P is 7, since all these planes must
intersect π in distinct points. If there was no point contained in more than three planes, then the total number of planes is
at most 7 × 2 + 1 = 15. Therefore there exists at least a point P0 contained in at least four planes. In the following we will
denote with τ or τi any plane through P0 and with σj or σ any plane not containing P0. Note that any two planes τi span a
4-space, otherwise they would have a line in common. We will denote the points Pi as the points having, in homogeneous
coordinates, all zeros and 1 in position i. We distinguish several cases.

(1) dim(⟨τ1, τ2, τ3, τ4⟩) = 4. First of all notice that in this case all the planes σj must be contained in Π4 = ⟨τ1, τ2, τ3, τ4⟩.
Suppose now that there exists a plane τi ⊄ Π4. Since it must meet all the planes σj, it meets Π4 in a line τi ∩ Π4 =

ℓ = {P0,Q , R}. We already know that at most six planes σj pass through Q and at most six planes σj pass through R,
other than τi. Moreover, any plane σj must intersect τi either in Q or in R, since it is contained in Π4. The total number
of planes σj is then 12; the number of planes τi is 7 and therefore the maximum number of planes of C in this case is
12 + 7 = 19. Since we are supposing that the number of planes of C is at least 20, this is a contradiction. Then all the
planes τi are subsets of Π4.
We now claim that there exists no τ ∉ {τ1, τ2, τ3, τ4} passing through P0. Assume for contradiction that there exists a
plane τ such that τ ∉ {τ1, τ2, τ3, τ4} which passes through P0. Then τ , τ1, τ2, τ3, τ4 partition Π4 \ {P0}. A plane σ not
through P0 intersects at least one among τ , τ1, τ2, τ3, τ4 in a line. This is impossible. Then the unique planes through P0
are τ1, τ2, τ3, τ4. The same argument holds for each point of Π4. Therefore through each point there pass no more than
4 planes. This means that the maximum number of planes of this configuration is

31 × 4
7

< 18.

(2) dim(⟨τ1, τ2, τ3, τ4⟩) = 5. LetΠ5 = ⟨τ1, τ2, τ3, τ4⟩. Arguing as before, if therewas τi ⊄ Π5, then τi∩Π5 = ℓ = {P0,Q , R}
and at most six planes σj pass through Q and at most six planes σj pass through R, other than τi. Since any plane σj must
be contained in Π5, then it must intersect τi either in Q or in R. Therefore the maximum number of planes in this case
is 12 + 7 = 19. Since by hypothesis the number of the planes is greater than 19, then all the planes through P0 must be
contained in Π5. Also, any plane σj is contained in Π5.

(3) dim(⟨τ1, τ2, τ3, τ4⟩) = 6.
(a) Suppose that ∀i1, i2, i3 ∈ {1, 2, 3, 4} dim(⟨τi1 , τi2 , τi3⟩) = 6. Consider a plane σj = ⟨Q1,Q2,Q3⟩, where Qk ∈ τik ,

k = 1, 2, 3. Clearly, Q1,Q2,Q3 are in general position, since τi1 , τi2 , τi3 generate a space of dimension 6. Let τ ∈

{τ1, τ2, τ3, τ4}\{τi1 , τi2 , τi3}. By assumption, every three planes among τ1, τ2, τ3, τ4 generate a space of dimension 6,
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