
Discrete Applied Mathematics ( ) –

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On a conjecture on the order of cages with a given girth pair
C. Balbuena ∗, J. Salas
Departament de Matemàtica Aplicada III, Universitat Politécnica de Catalunya, Campus Nord, Jordi Girona 1 i 3, 08034 Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 25 July 2012
Received in revised form 13 January 2015
Accepted 30 March 2015
Available online xxxx

Keywords:
Cages
Girth pair
Regular graph

a b s t r a c t

A (k; g, h)-graph is a k-regular graph of girth pair (g, h) where g is the girth of the graph,
h is the length of a smallest cycle of different parity than g and g < h. A (k; g, h)-cage
is a (k; g, h)-graph with the least possible number of vertices denoted n(k; g, h). Harary
and Kóvacs (1983) conjectured the inequality n(k; g, h) ≤ n(k, h) for all k ≥ 3, g ≥ 3,
h ≥ g +1. In this paper, we prove this conjecture for all (k; g, h)-cage with g odd provided
that a bipartite (k, h)-cage exists. When g is even we prove the conjecture for h ≥ 2g − 1,
provided that a bipartite (k, g)-cage exists.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In [11], Harary andKóvacs generalize the concept of (k, g)-cages by replacing the girth conditionwith a girth pair condition
(g, h) (i.e. g is the girth of the graph, h is the length of a smallest cycle of different parity than g and g < h). In that work the
authors proved the existence of (k; g, h)-cages with 3 ≤ g < h, obtaining the following inequality: n(k; g, h) ≤ 2n(k, h).
Also, they proved that if k ≥ 3 and h ≥ 4, then n(k; h − 1, h) ≤ n(k, h), and established the following conjecture.

Conjecture 1.1 ([11]). n(k; g, h) ≤ n(k, h) for all k ≥ 3, g ≥ 3, h ≥ g + 1.

The exact values n(k; 4, h) are studied in [14,16,20] and exact values of n(3; 6, h) for h = 7, 9, 11 are determined in [5].
All these values support Conjecture 1.1. In [19] it is proved the strict inequality n(k; h− 1, h) < n(k, h) for k ≥ 3 and h ≥ 4.

We want to emphasize that every known (k, g)-cage with even girth g is bipartite and it is conjectured that all cages
with even girth are bipartite [15,18]. In this regard, there is a result (cf. [4]), that states that all (k, g)-cages with girth g even
and such that have excess e = n(k, g)−n0(k, g) ≤ k−2 are bipartite. Hence, the requirement of the existence of a bipartite
(k, g)-cage for even g is natural.

In the first part of the paper, we settle Conjecture 1.1 when the smallest girth g is odd provided that there is a bipartite
(k, h)-cage with g < h. We also prove the exact value n(3; 5, 8) = 18.

In the second part, we study Conjecture 1.1 when the smallest girth g is even, and we prove the strict inequality
n(k; g, h) < n(k, h) if h ≥ 2g − 1 provided that there is a bipartite (k, g)-cage. As a consequence, we prove the inequality
for girth g = 6, 8, 12 and k = q + 1, where q is a prime power and also for (k, g)-cages with small excess since all these
graphs are bipartite [8].

2. Terminology and known results

All graphs considered are finite, undirected and simple (without loops or multiple edges). For definitions and notations
not explicitly stated the reader may refer to [6].
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Let G be a graph with vertex set V = V (G) and edge set E = E(G). If U ⊂ V the subgraph induced by U is denoted as
G[U]. The distance dG(u, v) between two vertices u and v is the minimum length of a path from u to v (uv-path) in G. The
girth of a graph G is the length g = g(G) of a shortest cycle. A girdle is a shortest cycle. The neighborhood N(u) of a vertex u
is the set of its neighbors, i.e., the vertices adjacent to u. The degree of a vertex u ∈ V is the cardinality of N(u). A graph is
called k-regular if all its vertices have the same degree k. A (k, g)-graph is a k-regular graph of girth g and a (k, g)-cage is a
(k, g)-graph with the smallest possible number of vertices. For k ≥ 3 and g ≥ 5 the order n(k, g) of a cage is bounded by

n(k, g) ≥ n0(k, g) =


1 + k

(g−3)/2
i=0

(k − 1)i g odd;

2
(g−2)/2

i=0

(k − 1)i g even.

(1)

This bound is known as the Moore bound for cages. Note that cages of even girth contain a tree of depth (g − 2)/2 and

order n0(k, g) = 2
(g−2)/2

i=0
(k − 1)i rooted in any edge uv.

A key point for proving many results in cages is the so-called Girth Monotonicity Theorem, established by Erdős and
Sachs [7] and Fu et al. [9].

Theorem 2.1 ([7,9]). Let k ≥ 2, 3 ≤ g1 < g2 be integers. Then n(k, g1) < n(k, g2).

The following useful lemma is a consequence of Theorem 2.1.

Lemma 2.1 ([13]). Let G be a (k, g)-cage with k ≥ 3 and girth g ≥ 4. Then every edge of G lies on at least k− 1 cycles of length
at most g + 1.

3. Results

In what follows we need the following notation. For uv ∈ E(G) and l ≥ 0, let denote the sets

Bl
uv = {x ∈ V (G) : d(x, u) = l and d(x, v) = l + 1} and B

l
uv =

l
i=0

Bi
uv.

Observe that B0
uv = {u} = B

0
uv and B1

uv = N(u)−v while B
1
uv = (N(u)−v)∪{u}. Moreover, note that Bl

uv ≠ Bl
vu and B

l
uv ≠ B

l
vu.

Let denote T l
uv = G[B

l
uv ∪ B

l
vu] and observe that if l ≤ g/2 − 2, where g is the girth of G, then T l

uv is the tree of depth l
rooted in the edge uv. When l = g/2 − 1 the subgraph T l

uv may not be a tree, it can contain edges between vertices in Bl
uv

and vertices in Bl
vu.

3.1. Conjecture 1.1 holds for girth pair (g, h) with g odd

Lemma 3.1. Let G be a bipartite (k, h)-cage with k ≥ 3 and even girth h > 6. Then there exist an edge uv ∈ E(G) and a girdle
β in G such that V (β) ∩ B

⌊h/4⌋−2
uv = ∅ and V (β) ∩ B

⌊h/4⌋−1
vu = ∅.

Proof. Let α = w0w1 · · · wℓzℓzℓ−1 · · · z0w0 be a girdle of G and take the subgraph T ℓ
w0z0 for ℓ = h/2 − 1. Then zt ∈

V (α) ∩ Bt
z0w0

and wt ∈ V (α) ∩ Bt
w0z0 for t = 0, 1, . . . , ℓ = h/2 − 1. From Lemma 2.1, it follows that there is another

girdle β ≠ α of G such that wℓzℓ ∈ E(β).
Let r = min{i : V (β) ∩ Bi

w0z0 ≠ ∅} and t = min{i : V (β) ∩ Bi
z0w0

≠ ∅}, x ∈ V (β) ∩ Br
w0z0 and y ∈ V (β) ∩ Bt

z0w0
. Observe

that the lemma holds if r ≥ ⌊h/4⌋ − 1 and t ≥ ⌊h/4⌋ for the edge uv taking u = w0 and v = z0.
Suppose r ≤ ⌊h/4⌋ − 2. Since α is the unique girdle containing both edges w0z0 and wℓzℓ, the girdle β through the edge

wℓzℓ must also contain a path Pwℓx, a path Pxa where a ∈ Bℓ
w0z0−wℓ, a path Pyzℓ , and a path Pby where b ∈ Bℓ

z0w0
−zℓ. Moreover,

since a ≠ b the girdle β must also contain a path Pab disjoint from the above ones. Since |E(Pwℓx)| and |E(Pxa)| ≥ h/2−1− r ,
|E(Pby)| and |E(Pyzℓ)| ≥ h/2 − 1 − t , we have

h = |E(β)| ≥ |wℓzℓ| + 2(h/2 − 1 − r) + 2(h/2 − 1 − t) + |E(Pab)| ≥ 2(h − t − r − 1)

yielding that

h/2 ≤ t + r + 1. (2)

Take u = z⌊h/4⌋−r−2 and v = z⌊h/4⌋−r−1 (see Fig. 1). Hence x ∈ B⌊h/4⌋−1
uv , that is x ∉ B

⌊h/4⌋−2
uv , and by (2) we have

t ≥ h/2 − (⌊h/4⌋ − 2) − 1 = ⌈h/4⌉ + 1 > ⌊h/4⌋ − 1 implying that y ∉ B
⌊h/4⌋−1
vu . Therefore, the result holds for the

edge uv and the girdle β in the case r ≤ ⌊h/4⌋ − 2. Similarly, we proceed for t ≤ ⌊h/4⌋ − 1 and the result follows. �
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