# On a conjecture on the order of cages with a given girth pair 

C. Balbuena*, J. Salas<br>Departament de Matemàtica Aplicada III, Universitat Politécnica de Catalunya, Campus Nord, Jordi Girona 1 i 3, 08034 Barcelona, Spain

## A R TICLE INFO

## Article history:

Received 25 July 2012
Received in revised form 13 January 2015
Accepted 30 March 2015
Available online xxxx

## Keywords:

Cages
Girth pair
Regular graph


#### Abstract

A $(k ; g, h)$-graph is a $k$-regular graph of girth pair $(g, h)$ where $g$ is the girth of the graph, $h$ is the length of a smallest cycle of different parity than $g$ and $g<h$. A ( $k ; g, h$ )-cage is a ( $k ; g, h$ )-graph with the least possible number of vertices denoted $n(k ; g, h)$. Harary and Kóvacs (1983) conjectured the inequality $n(k ; g, h) \leq n(k, h)$ for all $k \geq 3, g \geq 3$, $h \geq g+1$. In this paper, we prove this conjecture for all ( $k ; g, h$ )-cage with $g$ odd provided that a bipartite ( $k, h$ )-cage exists. When $g$ is even we prove the conjecture for $h \geq 2 g-1$, provided that a bipartite $(k, g)$-cage exists.


© 2015 Elsevier B.V. All rights reserved.

## 1. Introduction

In [11], Harary and Kóvacs generalize the concept of $(k, g)$-cages by replacing the girth condition with a girth pair condition $(g, h)$ (i.e. $g$ is the girth of the graph, $h$ is the length of a smallest cycle of different parity than $g$ and $g<h$ ). In that work the authors proved the existence of ( $k ; g, h$ )-cages with $3 \leq g<h$, obtaining the following inequality: $n(k ; g, h) \leq 2 n(k, h)$. Also, they proved that if $k \geq 3$ and $h \geq 4$, then $n(k ; h-1, h) \leq n(k, h)$, and established the following conjecture.

Conjecture 1.1 ([11]). $n(k ; g, h) \leq n(k, h)$ for all $k \geq 3, g \geq 3, h \geq g+1$.
The exact values $n(k ; 4, h)$ are studied in $[14,16,20$ ] and exact values of $n(3 ; 6, h)$ for $h=7,9,11$ are determined in [5]. All these values support Conjecture 1.1. In [19] it is proved the strict inequality $n(k ; h-1, h)<n(k, h)$ for $k \geq 3$ and $h \geq 4$.

We want to emphasize that every known $(k, g)$-cage with even girth $g$ is bipartite and it is conjectured that all cages with even girth are bipartite [15,18]. In this regard, there is a result (cf. [4]), that states that all ( $k, g$ )-cages with girth $g$ even and such that have excess $e=n(k, g)-n_{0}(k, g) \leq k-2$ are bipartite. Hence, the requirement of the existence of a bipartite $(k, g)$-cage for even $g$ is natural.

In the first part of the paper, we settle Conjecture 1.1 when the smallest girth $g$ is odd provided that there is a bipartite $(k, h)$-cage with $g<h$. We also prove the exact value $n(3 ; 5,8)=18$.

In the second part, we study Conjecture 1.1 when the smallest girth $g$ is even, and we prove the strict inequality $n(k ; g, h)<n(k, h)$ if $h \geq 2 g-1$ provided that there is a bipartite $(k, g)$-cage. As a consequence, we prove the inequality for girth $g=6,8,12$ and $k=q+1$, where $q$ is a prime power and also for $(k, g)$-cages with small excess since all these graphs are bipartite [8].

## 2. Terminology and known results

All graphs considered are finite, undirected and simple (without loops or multiple edges). For definitions and notations not explicitly stated the reader may refer to [6].

[^0]Let $G$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. If $U \subset V$ the subgraph induced by $U$ is denoted as $G[U]$. The distance $d_{G}(u, v)$ between two vertices $u$ and $v$ is the minimum length of a path from $u$ to $v$ (uv-path) in $G$. The girth of a graph $G$ is the length $g=g(G)$ of a shortest cycle. A girdle is a shortest cycle. The neighborhood $N(u)$ of a vertex $u$ is the set of its neighbors, i.e., the vertices adjacent to $u$. The degree of a vertex $u \in V$ is the cardinality of $N(u)$. A graph is called $k$-regular if all its vertices have the same degree $k$. A $(k, g)$-graph is a $k$-regular graph of girth $g$ and a $(k, g)$-cage is a ( $k, g$ )-graph with the smallest possible number of vertices. For $k \geq 3$ and $g \geq 5$ the order $n(k, g)$ of a cage is bounded by

$$
n(k, g) \geq n_{0}(k, g)= \begin{cases}1+k \sum_{i=0}^{(g-3) / 2}(k-1)^{i} & g \text { odd }  \tag{1}\\ 2 \sum_{i=0}^{(g-2) / 2}(k-1)^{i} & g \text { even }\end{cases}
$$

This bound is known as the Moore bound for cages. Note that cages of even girth contain a tree of depth $(g-2) / 2$ and order $n_{0}(k, g)=2 \sum_{i=0}^{(g-2) / 2}(k-1)^{i}$ rooted in any edge $u v$.

A key point for proving many results in cages is the so-called Girth Monotonicity Theorem, established by Erdős and Sachs [7] and Fu et al. [9].

Theorem 2.1 ([7,9]). Let $k \geq 2,3 \leq g_{1}<g_{2}$ be integers. Then $n\left(k, g_{1}\right)<n\left(k, g_{2}\right)$.
The following useful lemma is a consequence of Theorem 2.1.
Lemma 2.1 ([13]). Let $G$ be $a(k, g)$-cage with $k \geq 3$ and girth $g \geq 4$. Then every edge of $G$ lies on at least $k-1$ cycles of length at most $g+1$.

## 3. Results

In what follows we need the following notation. For $u v \in E(G)$ and $l \geq 0$, let denote the sets

$$
B_{u v}^{l}=\{x \in V(G): d(x, u)=l \text { and } d(x, v)=l+1\} \quad \text { and } \quad \bar{B}_{u v}^{l}=\bigcup_{i=0}^{l} B_{u v}^{i}
$$

Observe that $B_{u v}^{0}=\{u\}=\bar{B}_{u v}^{0}$ and $B_{u v}^{1}=N(u)-v$ while $\bar{B}_{u v}^{1}=(N(u)-v) \cup\{u\}$. Moreover, note that $B_{u v}^{l} \neq B_{v u}^{l}$ and $\bar{B}_{u v}^{l} \neq \bar{B}_{v u}^{l}$.
Let denote $T_{u v}^{l}=G\left[\bar{B}_{u v}^{l} \cup \bar{B}_{v u}^{l}\right]$ and observe that if $l \leq g / 2-2$, where $g$ is the girth of $G$, then $T_{u v}^{l}$ is the tree of depth $l$ rooted in the edge $u v$. When $l=g / 2-1$ the subgraph $T_{u v}^{l}$ may not be a tree, it can contain edges between vertices in $B_{u v}^{l}$ and vertices in $B_{v u}^{l}$.

### 3.1. Conjecture 1.1 holds for girth pair $(g, h)$ with $g$ odd

Lemma 3.1. Let $G$ be a bipartite ( $k, h$ )-cage with $k \geq 3$ and even girth $h>6$. Then there exist an edge $u v \in E(G)$ and a girdle $\beta$ in $G$ such that $V(\beta) \cap \bar{B}_{u v}^{\lfloor h / 4\rfloor-2}=\emptyset$ and $V(\beta) \cap \bar{B}_{v u}^{\lfloor h / 4\rfloor-1}=\emptyset$.
Proof. Let $\alpha=w_{0} w_{1} \cdots w_{\ell} z_{\ell} z_{\ell-1} \cdots z_{0} w_{0}$ be a girdle of $G$ and take the subgraph $T_{w_{0} z_{0}}^{\ell}$ for $\ell=h / 2-1$. Then $z_{t} \in$ $V(\alpha) \cap B_{z_{0} w_{0}}^{t}$ and $w_{t} \in V(\alpha) \cap B_{w_{0} z_{0}}^{t}$ for $t=0,1, \ldots, \ell=h / 2-1$. From Lemma 2.1, it follows that there is another girdle $\beta \neq \alpha$ of $G$ such that $w_{\ell} z_{\ell} \in E(\beta)$.

Let $r=\min \left\{i: V(\beta) \cap B_{w_{0} z_{0}}^{i} \neq \emptyset\right\}$ and $t=\min \left\{i: V(\beta) \cap B_{z_{0} w_{0}}^{i} \neq \emptyset\right\}, x \in V(\beta) \cap B_{w_{0} z_{0}}^{r}$ and $y \in V(\beta) \cap B_{z_{0} w_{0}}^{t}$. Observe that the lemma holds if $r \geq\lfloor h / 4\rfloor-1$ and $t \geq\lfloor h / 4\rfloor$ for the edge $u v$ taking $u=w_{0}$ and $v=z_{0}$.

Suppose $r \leq\lfloor h / 4\rfloor-2$. Since $\alpha$ is the unique girdle containing both edges $w_{0} z_{0}$ and $w_{\ell} z_{\ell}$, the girdle $\beta$ through the edge $w_{\ell} z_{\ell}$ must also contain a path $P_{w_{\ell} x}$, a path $P_{x a}$ where $a \in B_{w_{0} z_{0}}^{\ell}-w_{\ell}$, a path $P_{y z_{\ell}}$, and a path $P_{b y}$ where $b \in B_{z_{0} w_{0}}^{\ell}-z_{\ell}$. Moreover, since $a \neq b$ the girdle $\beta$ must also contain a path $P_{a b}$ disjoint from the above ones. Since $\left|E\left(P_{w_{\ell} x}\right)\right|$ and $\left|E\left(P_{x a}\right)\right| \geq h / 2-1-r$, $\left|E\left(P_{b y}\right)\right|$ and $\left|E\left(P_{y z_{\ell}}\right)\right| \geq h / 2-1-t$, we have

$$
h=|E(\beta)| \geq\left|w_{\ell} z_{\ell}\right|+2(h / 2-1-r)+2(h / 2-1-t)+\left|E\left(P_{a b}\right)\right| \geq 2(h-t-r-1)
$$

yielding that

$$
\begin{equation*}
h / 2 \leq t+r+1 \tag{2}
\end{equation*}
$$

Take $u=z_{\lfloor h / 4\rfloor-r-2}$ and $v=z_{\lfloor h / 4\rfloor-r-1}$ (see Fig. 1). Hence $x \in B_{u v}^{\lfloor h / 4\rfloor-1}$, that is $x \notin \bar{B}_{u v}^{\lfloor h / 4\rfloor-2}$, and by (2) we have $t \geq h / 2-(\lfloor h / 4\rfloor-2)-1=\lceil h / 4\rceil+1>\lfloor h / 4\rfloor-1$ implying that $y \notin \bar{B}_{v u}^{\lfloor h / 4\rfloor-1}$. Therefore, the result holds for the edge $u v$ and the girdle $\beta$ in the case $r \leq\lfloor h / 4\rfloor-2$. Similarly, we proceed for $t \leq\lfloor h / 4\rfloor-1$ and the result follows.

# https://daneshyari.com/en/article/6872094 

Download Persian Version:
https://daneshyari.com/article/6872094

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), julian.salas@upc.edu (J. Salas).

