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a b s t r a c t

By assigning a probability measure via the spectrum of the normalized Laplacian to each
graph and using Lp Wasserstein distances between probability measures, we define the
corresponding spectral distances dp on the set of all graphs. This approach can even be
extended to measuring the distances between infinite graphs. We prove that the diameter
of the set of graphs, as a pseudo-metric space equippedwith d1, is one.We further study the
behavior of d1 when the size of graphs tends to infinity by interlacing inequalities aiming
at exploring large real networks. A monotonic relation between d1 and the evolutionary
distance of biological networks is observed in simulations.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One major interest in graph theory is to explore the differences of graphs in structure, that is, in the sense of graph
isomorphism. In computational complexity theory, the subgraph isomorphism problem, likemany combinational problems
in graph theory, is NP hard. Therefore, a method that gives a quick and easy estimate of the difference between two graphs
is desirable [34]. As we know, all the topological information of a graph can be found in its adjacency matrix. The spectral
graph theory studies the relationship between the properties of graphs and the spectra of their representing matrices, such
as adjacency matrices and Laplace matrices [14,18,17]. In particular, some important topological information of a graph can
be extracted from its specific eigenvalue like the first or the largest one, see e.g. [18,17,39,11,25,12,10]. The approach of
reading information from the entire spectrum of a graph was explored in [5–7,30,32] etc. In spite of the existence of co-
spectral graphs (see [38, Chapter 3] for a general construction and the references therein), the spectra of graphs can support
us one way on exploring problems that involve (sub-)graph isomorphism by the fast computation algorithms and the close
relationship with the structure of graphs.

A spectral distance on the set of finite graphs of the same size, i.e. the same number of vertices, was suggested in a
problem of Richard Brualdi in [37] to explore the so-called cospectrality of a graph. It was further studied in [26] using
the spectra of adjacency matrices. Employing certain Gaussian measures associated to the spectra of normalized Laplacians
and the corresponding L1 distances, the first named author, Jost, the third named author and Stadler [21,20] explored a
spectral distance well-defined on the set of all finite graphs without any constraint about sizes. In this paper, instead of
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the Gaussian measures, we assign Dirac measures to graphs through the spectra of normalized Laplacians and use the
Wasserstein distances between probability measures to propose spectral distances between graphs. In fact, this notion
of spectral distances provides a metrization of the notion of spectral classes of graphs introduced in [21] via the weak
convergence of the corresponding Diracmeasures. The spectral class can be considered as a weak notion of graph limits (see
the concepts of graphon, graphing and related theories in the monograph of Lovász [33]). This notion of spectral distances
is even adaptable for weighted infinite graphs. And we can prove diameter estimates with respect to these distances, which
are sharp for certain cases.

Aweighted graphG is a triple (V , E, θ)whereV is the set of vertices, E is the set of edges and θ : E → (0, ∞), (x, y) → θxy,
is the (symmetric) edge weight function. We write x ∼ y if (x, y) ∈ E. We assume that for any vertex x, the weighted degree
defined by θx :=


y∼x θxy is finite and θxx = 0 (i.e. there is no self-loops).

Let us first consider finite weighted graphs. The normalized Laplacian of G = (V , E, θ) is defined as, for any function
f : V → R and any x ∈ V ,

∆Gf (x) = f (x) −
1
θx


y∼x

f (y)θxy. (1)

This operator can be extended to an infinite weighted graph which has countable vertex set V but is not necessarily locally
finite (see [27] or Section 2 below). As a matrix, ∆G is unitarily equivalent to the Laplace matrix studied in [17].

If x ∈ V is an isolated vertex, i.e. θx = 0, (1) reads as ∆Gf (x) = f (x). This implies that an isolated vertex contributes an
eigenvalue 1 to the spectrum of∆G, denoted by σ(G). In this way, by the absence of the self-loops, the spectrum of any finite
weighted graph σ(G) = {λi}

N
i=1, counting the multiplicity, satisfies the trace condition

N
i=1

λi = N (2)

where N = |V |. It is well-known that σ(G) is contained in [0, 2]. We associate to σ(G) a probability measure on [0, 2] as
follows:

µσ(G) :=
1
N


i

δλi , (3)

where δλi is the Dirac measure concentrated on λi. We call µσ(G) the spectral measure for a finite weighted graph. (This is
known as the empirical distribution of the eigenvalues in randommatrix theory.) Denote by P([0, 2]) the set of probability
measures on the interval [0, 2]. For anyµ ∈ P([0, 2]), the first moment ofµ is defined asm1(µ) :=


[0,2] λ dµ(λ). The trace

condition (2) is then translated to

m1(µσ(G)) = 1. (4)

This is a key property of the spectral measures for our further investigations.
Let dWp (1 ≤ p < ∞) be the pth Wasserstein distance on P([0, 2]). That is, for any µ, ν ∈ P([0, 2]) (see e.g. [40]),

dWp (µ, ν) :=


inf

π∈Π(µ,ν)


[0,2]×[0,2]

d(x, y)pdπ(x, y)
1/p

,

where Π(µ, ν) denotes the collection of all measures on [0, 2] × [0, 2] with marginals µ and ν on the first and second
factors respectively, i.e. π ∈ Π(µ, ν) if and only if π(A × [0, 2]) = µ(A) and π([0, 2] × B) = ν(B) for all Borel subsets
A, B ⊆ [0, 2].

It is well-known that (P([0, 2]), dWp ) is a complete metric space for p ∈ [1, ∞) which induces the weak topology of
measures in P([0, 2])(see e.g. [40, Theorem 6.9]).

One can prove that diam(P([0, 2]), dWp ) = 2. Indeed, on one hand, for any µ, ν ∈ P([0, 2]) by the optimal transport
interpretation of Wasserstein distance, dWp (µ, ν) ≤ 2. On the other hand, dWp (δ0, δ2) = 2. (Recall that δ0, δ2 are the Dirac
measures concentrated on 0, 2, respectively.)

Definition 1.1. Given two finite weighted graphs G = (V , E, θ) and G′
= (V ′, E ′, θ ′), the spectral distance between G and G′

is defined as

dp(G,G′) := dWp (µσ(G), µσ(G′)). (5)

We denote by F G the space of all finite weighted graphs. Then for any 1 ≤ p < ∞, (F G, dp) is a pseudo-metric space.
This is not a metric space due to the existence of co-spectral graphs. However, in applications this spectral consideration
leads to the simplification of measuring the discrepancy of graphs.
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