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a b s t r a c t

A parallel knock-out scheme for a graph proceeds in rounds in each ofwhich each surviving
vertex eliminates one of its surviving neighbours. A graph is KO-reducible if there exists
such a scheme that eliminates every vertex in the graph. The Parallel Knock-Out problem
is to decide whether a graph G is KO-reducible. This problem is known to be NP-complete
and has been studied for several graph classes. We show that the problem is NP-complete
even for split graphs, a subclass of P5-free graphs. In contrast, our main result is that it is
linear-time solvable for P4-free graphs (cographs).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider parallel knock-out schemes for finite undirected graphs with no self-loops and no multiple edges. These
schemes, which were introduced by Lampert and Slater [17], proceed in rounds. In the first round each vertex in the graph
selects exactly one of its neighbours, and then all the selected vertices are eliminated simultaneously. In subsequent rounds
this procedure is repeated in the subgraph induced by those vertices not yet eliminated. The scheme continues until there
are no vertices left, or until an isolated vertex is obtained (since an isolated vertexwill never be eliminated). A graph is called
KO-reducible if there exists a parallel knock-out scheme that eliminates the whole graph. The parallel knock-out number of a
graph G, denoted by pko(G), is the minimum number of rounds in a parallel knock-out scheme that eliminates every vertex
of G. If G is not KO-reducible, then pko(G) = ∞.
Examples. Every graph G with a hamiltonian cycle has pko(G) = 1, as each vertex can select its successor on a hamiltonian
cycle C of G after fixing some orientation of C . Also every graph G with a perfect matching has pko(G) = 1, as each vertex
can select its matching neighbour in the perfect matching. In fact it is not difficult to see [2] that a graph G has pko(G) = 1
if and only if G contains a [1,2]-factor, that is, a spanning subgraph in which every component is either a cycle or an edge.

We study the computational complexity of the Parallel Knock-Out problem, which is the problem of deciding whether
a given graph is KO-reducible. Our main motivation is the close relationship with cycles and matchings as illustrated by the
above examples. We also consider the variant in which the number of rounds permitted is fixed. This problem is known as
the k-Parallel Knock-Out problem, which has as input a graph G and ask whether pko(G) ≤ k for some fixed integer k
(i.e. that is not part of the input).
KnownResults. The 1-Parallel Knock-Out problem is equivalent [2] to testingwhether a graph has a [1, 2]-factor, which is
well-known to be polynomial-time solvable (see e.g. [4] for a proof). However, both the problems Parallel Knock-Out and
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k-Parallel Knock-Out with k ≥ 2 are NP-complete even for bipartite graphs [4]. On the other hand, it is known that
Parallel Knock-Out and k-Parallel Knock-Out (for all k ≥ 1) can be solved in O(n3.5 log2 n) time on trees [2]. These
results were later extended to graph classes of bounded treewidth [4]. It remains open whether a further generalization
is possible to graph classes of bounded clique-width. Broersma et al. in [3] gave an O(n5.376) time algorithm for solving
Parallel Knock-Out on n-vertex claw-free graphs. Later this was improved to an O(n2) time algorithm for almost claw-
free graphs (which generalize the class of claw-free graphs) [16]. The latter paper also gives a full characterization of
connected almost claw-free graphs that are KO-reducible. In particular it shows that every KO-reducible almost claw-
free graph has parallel knock-out number at most 2. In general, KO-reducible graphs (even KO-reducible trees [2]) may
have an arbitrarily large parallel knock-out number. Broersma et al. [3] showed that a KO-reducible n-vertex graph G has
pko(G) ≤ min{−
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4 )

1
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1
2 } (where α denotes the size of a largest independent set in G). This bound is

asymptotically tight for complete bipartite graphs [2]. Broersma et al. [3] also showed that every KO-reducible graph with
no induced (p + 1)-vertex star K1,p has parallel knock-out number at most p − 1.
Our Results. To date the only graph classes of unbounded tree-width for which Parallel Knock-Out is known to be
polynomial-time solvable are complete bipartite graphs [2] and almost claw-free graphs [16], andwe aim to identify further
such classes. In particularwewant to address the openproblemofwhether Parallel Knock-Out is polynomial-time solvable
on graph classes whose clique-width is bounded by a constant. This seems a very challenging problem, and in this paper
we focus on graphs of clique-width at most 2 (which may have arbitrarily large tree-width). It is known that a graph has
clique-width at most 2 if and only if it is a cograph [7]. Cographs are also known as P4-free graphs (a graph is called Pk-free
if it has no induced k-vertex path).

In Section 3 we give a linear-time algorithm for solving the Parallel Knock-Out problem on cographs. The first step of
the algorithm is to compute the cotree of a cograph. It then traverses the cotree twice. The first time to compute to what
extent ‘‘large’’ subgraphs can be reduced by themselves and howmany free ‘‘firings’’ from outside are available. The second
time to check whether the number of free external firings is sufficient to knock them out. In this way it will be verified
whether the whole graph is KO-reducible. In Section 4 we prove that both the Parallel Knock-Out problem and the k-
Parallel Knock-Out problem (k ≥ 2) are NP-complete even for split graphs. Because split graphs are P5-free, our results
imply a dichotomy result for the computational complexity of the Parallel Knock-Out problem restricted to Pk-free graphs,
as shown in Section 5, where we also give some (other) open problems.

2. Preliminaries

We denote a graph by G = (V (G), E(G)) and write |G| = |V (G)| to denote the order of G. An edge joining vertices u and v
is denoted by uv. If not stated otherwise a graph is assumed to be finite, undirected and simple.

Let G = (V , E) be a graph. The neighbourhood of u ∈ V , that is, the set of vertices adjacent to u is denoted by
NG(u) = {v | uv ∈ E}. For a subset S ⊆ V , we let G[S] denote the induced subgraph of G, which has vertex set S and
edge set {uv ∈ E | u, v ∈ S}. A set I ⊆ V is called an independent set of G if no two vertices in I are adjacent to each other. A
subset C ⊆ V is called a clique of G if any two vertices in C are adjacent to each other. A subset D ⊆ V is a dominating set of
a graph G = (V , E) if every vertex of G is in D or adjacent to a vertex in D.

The union of two graphs G and H is the graph with vertex set V (G)∪ V (H) and edge set E(G)∪ E(H). If V (G)∩ V (H) = ∅,
then we say that the union of G and H is disjoint and write G + H . We denote the disjoint union of r copies of G by rG.

For n ≥ 1, the graph Pn denotes the path on n vertices, that is, V (Pn) = {u1, . . . , un} and E(Pn) = {uiui+1 | 1 ≤ i ≤ n−1}.
For n ≥ 3, the graph Cn denotes the cycle on n vertices, that is, V (Cn) = {u1, . . . , un} and E(Cn) = {uiui+1 | 1 ≤ i ≤

n − 1} ∪ {unu1}. The graph Kn denotes the complete graph on n vertices, that is, the n-vertex graph whose vertex set is a
clique. A graph is complete bipartite if its vertex set can be partitioned into two classes such that two vertices u and v are
adjacent if and only if u and v belong to different classes. The graph Kp,q is the complete bipartite graphwith partition classes
of sizes p and q, respectively; the graph K1,q is also called the star on q + 1 vertices.

Let G be a graph and let {H1, . . . ,Hp} be a set of graphs. We say that G is (H1, . . . ,Hp)-free if G has no induced subgraph
isomorphic to a graph in {H1, . . . ,Hp}. If p = 1 we may write H1-free instead of (H1)-free. A P4-free graph is also called
a cograph. A graph G is a split graph if its vertex set can be partitioned into a clique and an independent set. Split graphs
coincide with (2K2, C4, C5)-free graphs [10]; note that this implies that every split graph is 2K2-free and thus P5-free.

We also need some formal terminology for parallel knock-out schemes. For a graphG = (V , E), aKO-selection is a function
f : V → V with f (v) ∈ N(v) for all v ∈ V . If f (v) = u, we say that vertex v fires at vertex u, or that u is knocked out by a
firing of v. If u ∈ U for some U ⊆ V then the firing is said to be internalwith respect to U if v ∈ U; otherwise it is said to be
external (with respect to U).

For a KO-selection f , we define the corresponding KO-successor of G as the subgraph of G that is induced by the vertices
in V \ f (V ); if G′ is the KO-successor of G we write G ❀ G′. Note that every graph without isolated vertices has at least one
KO-successor. A sequence

G ❀ G1
❀ G2

❀ · · · ❀ Gs,

is called a parallel knock-out scheme or KO-scheme. A KO-scheme in which Gs is the null graph (∅, ∅) is called a KO-reduction
scheme; in that case G is also called KO-reducible. A single step in a KO-scheme is called a (firing) round. Recall that the
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