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1. Introduction

A b-vertex coloring of a graph G is a proper vertex coloring of G such that each color class contains a vertex that has at
least one neighbor in every other color class. The b-chromatic number ¢(G) of a graph G is the largest integer k for which
G has a b-vertex coloring with k colors. This concept was introduced in [17] by Irving and Manlove by considering proper
colorings that are minimal with respect to a partial order P defined on the set of all partitions of the vertex set of G that
induces a proper coloring. The chromatic number x (G) is the minimum number of colors used among all minimal elements
of P, while ¢(G) is the maximum number of colors among this same set.

Since then the b-chromatic number has been an active field of research. Already Irving and Manlove [17] have shown
that computing ¢ (G) is an NP-hard problem in general and polynomial for trees. It is known that the problem remains NP-
hard even when restricted to bipartite graphs, (see [26]), and that it is also hard to approximate in polynomial time within
a factor of % — ¢, for any € > 0 unless P = NP, see [9]. Analysis of the b-chromatic number for special graph classes such
as powers of paths, cycles, complete binary trees, and complete caterpillars can be found in [ 10-12]. Further graph classes,
such as cacti [7], Kneser graphs [21], cographs, P4 sparse [4], P4 tidy graphs [30] and large girth graphs [28,6], were more
recently considered too. Bounds for the b-chromatic number were studied in turn in [2,1,8,23,25]. The b-chromatic number
under graph operations was considered in [24] for the Cartesian product and in [19] for other three standard products.

The behavior of the b-chromatic number differs notoriously from the classical chromatic number. The values of k for
which a graph admits a b-coloring do not necessarily form an interval in the set of integers. It makes therefore sense to study
the graph families in which there exists a t-b-vertex coloring for every integer t between y (G) and ¢(G). This interesting
concept of b-continuous graphs was introduced by Barth et al. in [3]. Another atypical property of the b-chromatic number
is that it can increase when taking induced subgraphs. A graph G is b-monotonous if x,(H{) > x»(H,) for every induced
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subgraph H; of G and every induced subgraph H, of H;. Cographs for instance are b-monotonous. This idea was proposed
in [4]. In [16], b-perfect graphs were introduced and studied. A graph G is b-perfect if x (H) = ¢(H) for every induced
subgraph H of G.

Intuitively, for a b-coloring to be possible on a graph G, we need to have enough vertices of high enough degree, at least
one in each color class. Let vy, ..., v, be a sequence of vertices, such that d(v;) > --- > d(v,) where d(v;) denotes the
degree of v;. Then m(G) = max{i : d(v;) > i — 1} is an upper bound for ¢(G). From this point of view, d-regular graphs are
of special interest, since m(G) = d + 1 for a d-regular graph G and every vertex is a candidate to have each color class in its
neighborhood. Indeed, in [26] it was shown that if a d-regular graph G has at least d* vertices, then the equality ¢(G) = d+1
holds. This bound was later improved to 2d> in [5]. In particular, it was shown in [18] that there are only four exceptions
among cubic graphs with ¢(G) < 4, one of them being the Petersen graph.

We continue in this work the study of the edge version of the b-vertex coloring and the b-chromatic number introduced
in [20], namely the b-edge coloring and the b-chromatic index, respectively. A b-edge coloring of a graph G is a proper edge
coloring of G such that each color class contains an edge that has at least one incident edge in every other color class. The
b-chromatic index of a graph G is the largest integer ¢’ (G) for which G has a b-edge coloring with ¢’ (G) colors. We say that this
coloring realizes ¢’ (G). An edge e of color i that has all other colors on its incident edges is called color i dominating edge; we
say also that color i is realized on e. The trivial upper bound m’(G) for the b-edge coloring is defined similarly as for the vertex
version: m'(G) = max{i : d(e;) > i — 1}, where d(e;) > --- > d(ep,) is the degree sequence of the edges ey, ..., e, of G.

In [20], the authors determine the b-chromatic index of trees, and give conditions for graphs that have the b-chromatic
index strictly less than m’(G), as well as conditions on graph G for which ¢’(G) = m’(G). They prove further that ¢’(G) = 5
for connected cubic graphs, with only four exceptions: K4, K3 3, the prism over K3, and the cube Q3. Regarding the complexity
of the problem, we note that determining whether ¢’(G) = m’(G) was shown to be NP-complete by Lima et al. in [27].

In the next section we recall some standard definitions and notation. In the third section we describe bounds for ¢’ (G x H)
for some graph classes. In the fourth section we show some important consequences of a previous theorem of [20] that allows
exact results for ¢’ under certain conditions.

Determining the b-chromatic index of a graph can be very tedious already for small examples. For this reason we devel-
oped a linear programming model for the problem, which we describe and study for effectiveness in the fifth section. With
this method and all previous results we were able to produce exact values for some families of direct products, documented
in the last section.

2. Preliminaries

Let G be a graph. The line graph £(G) of G is the graph with V (.£(G)) = E(G), and two edges of G are adjacent in .£(G) if
they share a common vertex. Clearly ¢’ (G) = ¢(L(G)). The number of vertices incident with the vertex v is the degree of v
and is denoted by d(v). If all vertices have the same degree d, we say that G is a d-regular graph. The degree of an edge e = uv
is denoted by d(e) and equals to d(u) + d(v) — 2. Notice that d(e) in graph G equals to d(v) in J£(G) where v € V(L(G))
corresponds to e € E(G). We denote the set of edges incident to an edge e by N(e). A graph is called an r-edge regular graph
if all its edges have the same degree r.

The direct product G x H of graphs G and H has vertex set V(G) x V(H); two vertices (g, h) and (g’, h’) are adjacent in
G x H if they are adjacent in both coordinates, i.e. gg’ € E(G) and hh’ € E(H).Ife = (g, h)(g’, h") € E(Gx H),let pg(e) = gg’
and py (e) = hh’ be the projection of edge e over G and H, respectively. The direct product is associative (see [15]) and hence
we can write more factors without brackets: G; x --- X G, = x$‘=1 G;. The direct product seems to be the most elusive
product among all four standard products (Cartesian, strong, direct and lexicographic). The reason for this is the fact that
each edge of G x H projects to an edge in both factors, which is not the case on other products. This also constitutes the
direct product as the product in categorical sense. Even basic graph properties, such as connectedness are non trivial for the
direct product. Indeed, G x H need not be connected, even if both factors are. This happens exactly when both factors are
bipartite (and connected) and in this case there are exactly two components (see [31] or [15]). Also the following distance
formula (see [22]),

dexn (g, h), (g, ")) = min{max{dg (g, g"). dj; (h, h)}, max{dg (g, &, dy (h, B)}}

is far more complicated for the direct product than for others. Here dg.(g, g’) means the length of a shortest walk of even
length between g and g’ in G and dZ(g, g’) the length of a shortest odd walk between g and g’ in G. If such a walk does not
exist, we set dz.(g, g') or d2(g, g’) to be infinite. For more about direct product graphs see the book [15].

3. Bounds for ¢’ (G x H)

A one-factor or a perfect matching of a graph G is a set of independent edges of G that meet every vertex of G. Clearly, a
graph with a one-factor has an even number of vertices. A one-factorization of G is a partition of E(G) into one-factors. Thus,
in a one-factorization of G, every edge belongs to exactly one one-factor. Evidently G must be regular with an even number
of vertices if it has a one-factorization. The basic examples of graphs with one factorization are even cycles and hypercubes.
Graph products form a rich field for one factorizations, see for instance Section 30.1 of [15].
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