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a b s t r a c t

A cograph is a graph which does not contain any induced path on four vertices. In this
paper, we characterize those cographs that are intersection graphs of paths on a grid in the
following two cases: (i) the paths on the grid all have atmost one bend and the intersections
concern edges (→ B1-EPG); (ii) the paths on the grid are not bended and the intersections
concern vertices (→ B0-VPG).

In both cases,we give a characterization by a family of forbidden induced subgraphs.We
further present linear-time algorithms to recognize B1-EPG cographs and B0-VPG cographs
using their cotree.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Edge intersection graphs of paths on a grid (or EPG graphs) are graphs whose vertices can be represented as paths on a
rectangular grid such that two vertices are adjacent if and only if the corresponding paths share at least one edge of the grid.
We may assume that the grid is Z2 or a sufficiently large subset of it. The EPG graphs were first introduced in [16] and have
been studied by several authors (see for instance [2,3,5,22,23]). Every graphG is an EPG graph [16], somotivated by the study
of these graphs with constraints from circuit layout problems, Golumbic, Lipshteyn and Stern introduced subclasses of EPG
graphs based on restricting the number of bends permitted for each path. Specifically, for a fixed k ≥ 0, the paths on the grid
that represent the vertices of a graph are allowed to have at most k bends, i.e., at most k grid point turns, and the subclass of
graphs that admit such a representation is denoted by Bk-EPG. Notice that B0-EPG graphs are equivalent to interval graphs.

In [3], the authors show that for any k, only a small fraction of all labeled graphs on n vertices are Bk-EPG. Some results
of [3] were also proved in [5]. In addition, the authors of [5] consider different classes of graphs and show, in particular,
that every planar graph is a B5-EPG graph. This result was later improved in [23], where the authors show that every planar
graph is a B4-EPG graph. It is still open if k = 4 is best possible. So far it is only known that there are planar graphs that
are B3-EPG graphs and not B2-EPG graphs. The authors in [23] also show that all outerplanar graphs are B2-EPG graphs thus
proving a conjecture of [5].

For the case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [16] showed that every tree is a B1-EPG graph, and Asi-
nowski and Ries [2] showed that every B1-EPG graph on n vertices contains either a clique or a stable set of size at least
n1/3. The problem of recognizing B1-EPG graphs was shown to be NP-complete by Heldt, Knauer and Ueckerdt in [22]. It is
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therefore interesting to see which subfamilies of B1-EPG graphs have special properties and which can be efficiently recog-
nized. Asinowski and Ries [2] give a characterization of the B1-EPG graphs among some subclasses of chordal graphs, namely,
chordal bull-free graphs, chordal claw-free graphs, chordal diamond-free graphs, and special cases of split graphs. It follows
from [16,3] that a complete bipartite graph Km,n (m ≤ n) is B1-EPG if and only if m ≤ 2 and n ≤ 4. Since complete bipar-
tite graphs are a special case of cographs, it is natural to ask for a characterization of B1-EPG cographs. In [12], it is proven
that cographs are well quasi ordered with respect to the induced subgraph relation. Therefore, any subfamily of the class of
cographs can be characterized by a finite set of forbidden minimal induced subgraphs and recognized in polynomial time.
However, it is only proven that such obstruction set exists. In Section 4 of this paper, we provide such a characterization
for B1-EPG by giving a complete family of minimal forbidden induced subgraphs. Later, in Section 6, we present an efficient
linear-time algorithm to recognize this subfamily using their cotrees.

Instead of considering edge intersection graphs of paths on a grid, one may be interested in vertex intersection graphs of
paths on a grid (or VPG graphs). The VPG graphs are graphs whose vertices correspond to paths on a rectangular grid such
that two vertices are adjacent if and only if the corresponding paths share at least one grid point. These graphs were first
introduced in [1] and have also been studied by several authors (see for instance [7,8,17]). In [1], the authors show that VPG
graphs are exactly string graphs, i.e., intersection graphs of arbitrary curves in the plane. As in the case of EPG graphs, one
may restrict the number of bends for each path. Hence, for a fixed k ≥ 0, the paths on the grid that represent the vertices
of a graph are allowed to have at most k bends, i.e., at most k grid point turns, and the subclass of graphs that admit such
a representation is denoted by Bk-VPG. In [1], the authors notice that B0-VPG graphs are equivalent to the so called 2-DIR
graphs, whose recognition complexity is NP-complete [24].

A hierarchy of VPG graphs, relating them to other known families of graphs, is presented in [1], where they show for
instance that planar graphs are B3-VPG graphs. This result was recently improved in [8] where it was shown that planar
graphs are B2-VPG graphs. It remains open if k = 2 is best possible for planar graphs. In [17], the authors characterize split
graphs that are B0-VPG graphs by giving a family of minimal forbidden induced subgraphs. Furthermore, they characterize
chordal claw-free B0-VPG graphs as well as chordal bull-free B0-VPG graphs. It is easy to see that all permutation graphs
are B1-VPG by labeling the x and y axes with the two permutations and connecting each pair of numbers with a single bend
path. It thus follows that cographs (a subfamily of permutation graphs) are B1-VPG. So it is natural to ask which cographs
are B0-VPG. In Section 5 of this paper, we characterize the B0-VPG cographs as those which contain no induced 4-wheel, and
present an efficient linear-time recognition algorithm using the cotree of the graph in Section 6.

We start with some preliminaries in Section 2, and in Section 3 we present some useful basic properties of the neigh-
borhoods of C4’s in cographs which will be useful in our proofs characterizing B1-EPG cographs. In Sections 4 and 5 we
present characterizations for the classes of B1-EPG cographs and B0-VPG cographs, respectively. Linear time recognition al-
gorithms for both of these classes are given in Section 6. Finally, we conclude with some open questions in Section 7. For
graph theoretical terms that are not defined here, we refer the reader to [14,25].

2. Preliminaries

2.1. General graph definitions and notation

All graphs in this paper are connected, finite and simple. A clique is a set of pairwise adjacent vertices and a stable set is a
set of pairwise nonadjacent vertices. The size of a maximum stable set in G is called the stability number of G and is denoted
by α(G). A set U ⊆ V is called dominating if for every vertex v ∈ V r U there exists u ∈ U such that uv ∈ E. For disjoint
sets A, B ⊆ V , we say that A is complete to B if every vertex in A is adjacent to every vertex in B, and that A is anticomplete
to B if every vertex in A is nonadjacent to every vertex in B. The complement of a graph G will be denoted by G. As usual,
Ck, k ≥ 3, denotes an induced cycle on k vertices. A vertex v which is adjacent to all the vertices of a Ck is called a center,
and we call the graph induced by V (Ck) ∪ {v} a k-wheel denoting it byWk (although it has k + 1 vertices). Finally, Pk, k ≥ 0,
denotes an induced path on k vertices, Kp, p ≥ 0, denotes a clique on p vertices, mKp, m, p ≥ 0, denotes m disjoint copies of
mKp, and Kp,q denotes the complete bipartite graphwith p vertices in one set of the bipartition and q vertices in the other set
of the bipartition. More generally, Km1,...,mt is the complete multipartite graphwith part-sizesm1, . . . ,mt .

Let G = (V , E) be a graph. For a vertex v ∈ V , we let NG(v) denote the set of vertices in G that are adjacent to v, i.e.,
the neighbors of v. NG(v) is called the neighborhood of vertex v. We will write NG[v] = NG(v) ∪ {v}, and call NG[v] the
closed neighborhood of vertex v. Whenever it is clear from the context what G is, we will drop the subscripts and write
N (v) = NG(v) and N [v] = NG[v]. A vertex v is called a true twin of some vertex u if N [v] = N [u]. We will denote by G[X]

the subgraph induced by X ⊆ V . We write G − v for the subgraph obtained by deleting vertex v and all the edges incident
to v. Similarly, for A ⊆ V , we denote by G − A the subgraph of G obtained by deleting the set A and all the edges incident to
some vertex in A, i.e., G − A = G[V r A].

We will denote by GR the reduced graph of G, that is, the graph obtained from G by deleting for each set U of true twins
all but one u ∈ U . Thus, GR does not contain any pair of adjacent vertices which have exactly the same closed neighborhood.
The next lemma immediately follows from the definition of the reduced graph GR.

Lemma 1. Let G be a graph and let GR be its reduced graph. Then any connected component of GR isomorphic to a clique is an
isolated vertex.
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