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a b s t r a c t

Let G be a vertex-weighted graph in which each vertex has weight 1. Given a vertex uwith
positive weight and a neighbor v whose weight is at least the weight on u, a fractional
acquisitionmove transfers some amount of weight at u from u to v. The fractional acquisition
number of G, written af (G), is the minimum number of vertices with positive weight after
a sequence of fractional acquisition moves in G. In this paper, we determine the fractional
acquisition number of all graphs: if G is an n-vertex path or cycle, then af (G) = ⌈n/4⌉; if G
is connected with maximum degree at least 3, then af (G) = 1.

© 2014 Published by Elsevier B.V.

1. Introduction

Consider an army that is deployed at a collection of bases, some of which are connected by roads. Wewish to consolidate
all of the troops at a single base. Troops are allowed to move only to neighboring bases with at least as many troops as their
current base. Is it possible for all of the troops to reach a single base?

Let G be a vertex-weighted graph and let w : V (G) → R≥0 be the weight assignment on G. In a weighted graph G, a
fractional acquisitionmove transfers somepositive amount ofweight froma vertex u to a neighbor v, provided that theweight
on v is at least the weight on u. The amount of weight transferred cannot exceed the weight on u. We refer to a succession of
fractional acquisition moves as a fractional protocol; throughout this paper we assume that all protocols are finite in length.
We study fractional protocols on graphs in which every vertex starts with weight 1. The fractional acquisition number of G,
denoted as af (G), is the minimum size of the set of vertices with positive weight after a fractional protocol on G. The weight
assignment w is feasible if there is a fractional protocol that achieves w starting from the initial all-1s weight assignment.

Previous work on acquisition in graphs has focused on acquisition moves that transfer all of the weight from a vertex
to its neighbor with at least the same weight; we call such an acquisition move a total acquisition move. Analogously, the
minimum number of vertices in a graph Gwith positive weight after a sequence of total acquisitionmoves is the total acqui-
sition number of G, denoted as at(G). Lampert and Slater [1] proved that for n ≥ 2, if G is a connected n-vertex graph, then
at(G) ≤ (n+1)/3. They also provided a lower bound on the total acquisition number of a connected graph depending on its
degree sequence. LeSaulnier andWest [3] characterized all graphs achieving equality for the total acquisition upper bound.
Slater andWang [4] proved that determining if the total acquisition number of a given graph G is 1 is an NP-complete prob-
lem and provided a linear time algorithm that determines the total acquisition number for caterpillars. LeSaulnier et al. [2]
then provided a polynomial time algorithm to test at(T ) ≤ k where T is a tree and k is any fixed positive integer. They also
established numerous sufficient conditions for a graph to have total acquisition number 1.

In [1], Lampert and Slater used the term consolidation to refer to an acquisition move that moves an integer amount
of weight from a vertex to its neighbor. Clearly, each total acquisition move is also a consolidation. A fractional acquisition

∗ Tel.: +1 5854752519; fax: +1 5854756627.
E-mail address: pswsma@rit.edu.

http://dx.doi.org/10.1016/j.dam.2014.06.010
0166-218X/© 2014 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.dam.2014.06.010
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2014.06.010&domain=pdf
mailto:pswsma@rit.edu
http://dx.doi.org/10.1016/j.dam.2014.06.010


P.S. Wenger / Discrete Applied Mathematics 178 (2014) 142–148 143

move is a further generalization of a consolidation. Because each total acquisitionmove is also a fractional acquisitionmove,
we have that af (G) ≤ at(G) for all G.

In this paper we determine the fractional acquisition number of all graphs. In Section 2, we prove that if G is a connected
graph and ∆(G) ≥ 3, then af (G) = 1. This is a startling contrast to what is known about total acquisition numbers. All
sufficient conditions in [2] for a graph to have total acquisition number 1 depend on dominating cliques or vertices of large
degreewhose neighborhoods are dominating sets. Such graphs have low diameter and strong structural requirements.More
generally, it is conjectured in [2] that ifG is an n-vertex graphwith diameter 2, then at(G) is bounded by an absolute constant
(perhaps even 2), but the best known bound is that at(G) ≤ 32 lg n lg lg n. In contrast, adding a single pendant to a vertex of
degree 2 in an (n−1)-vertex path yields an n-vertex graphwithmaximumdegree 3, diameter n−2, and fractional acquisition
number 1. We prove that trees with maximum degree at least 3 have fractional acquisition number 1 by inductively
constructing a protocol that yields aweight distributionwith certain desired properties. For arbitrary connected graphswith
maximum degree at least 3 it is then sufficient to use the edge set of a spanning tree containing a vertex of degree at least 3.

In Section 3, we prove that the fractional acquisition numbers of the n-vertex path and the n-vertex cycle are ⌈n/4⌉.
Combined with the result on connected graphs with maximum degree at least 3 this determines the fractional acquisition
number of every connected graph, and consequently all graphs.

Interestingly, when G is a path or cycle, the fractional acquisition number and total acquisition number of G are equal
(the total acquisition number is determined in [1]). Thus the freedom of fractional acquisition moves does not provide an
advantagewhen themaximumdegree of a graph is 2. The proof that at(Pn) = at(Cn) = ⌈n/4⌉ follows from the observations
that each total acquisition move at most doubles the weight at a vertex and each edge can be used at most once by total
acquisition moves (Pn and Cn denote the n-vertex path and cycle, respectively). Therefore the maximum amount of weight
that a vertex in a path or cycle can acquire via total acquisitionmoves is 4, and the result follows. In contrast, in Section 3we
show that the maximum amount of weight that a vertex in Pn may acquire via fractional acquisition moves grows with n.

Though we determine the fractional acquisition number of all graphs, many interesting open questions remain,
particularly with respect to the efficiency of fractional protocols. We present open questions and conjectures in Section 4.

For any undefined terminology, we refer the reader to [5].

2. General graphs

We determine the fractional acquisition number of graphs with maximum degree at least 3. If u and v are vertices in a
tree T , then we let T (u, v) denote the unique u, v-path in T . Also, we refer to the vertices in a tree T with degree at least 3
as branch vertices.

Theorem 1. If G is a connected graph with ∆(G) ≥ 3, then af (G) = 1.

In the proof of Theorem 1, we make extensive use of paths with weight assignments that allow all of the weight on
the path to be acquired by a single vertex. An ascending path is a path v1v2 . . . vk with a weight assignment w such that
w(v1) ≤ w(v2) and w(vi) < (vi+1) for i ∈ {2, . . . , k − 1}. When it is convenient, we will say that such a path P ascends
to vk, or that P is vk-ascending. An ascending path P is strictly ascending if w(v1) < w(v2). A weighted tree T is ascending if
there is a vertex v ∈ V (T ) such that for every vertex u in the tree, T (u, v) is v-ascending.

We will frequently use a protocol that moves weight along an ascending path. Let P = v1 . . . vk be a k-vertex path with a
positive weight assignment w that ascends from v1 to vk. Let c = min({w(v1)} ∪ {w(vi+1) − w(vi): 2 ≤ i ≤ k− 1}). Define
the path protocol, denoted by A(v1, vk), as follows. Transfer weight c from v1 to vk while moving no other weight; let step
i in the protocol move weight c from vi to vi+1. After the ith step, the new weight on vi+1 is w(vi+1) + c; since w(vi+2) ≥

w(vi+1) + c , the protocol can continue. On step k − 1, the ‘‘packet’’ of weight c reaches vk and the protocol terminates. We
denote ℓ repeated applications of the path protocol A(v1, vn) by A(v1, vn)

ℓ.

Lemma 2. If a tree T has a feasible weight assignment w that ascends to a vertex r, then af (T ) = 1 and r can acquire all of the
weight in T .

Proof. We use induction on the number of vertices in T with positive weight. If r is the only vertex with positive weight,
then af (T ) = 1. Otherwise, let u be a vertex with positive weight that is farthest from r . Use the path protocol to move
weight to u from r; let c be the amount of weight transferred from u to r . Applying the protocol A(u, r)⌈w(u)/c⌉ leaves uwith
weight 0, r withweightw(r)+w(u), and all other weights unchanged. Thus we have decreased the number of vertices with
positive weight and we apply the induction hypothesis. �

To prove Theorem 1, we need only fractional acquisition moves that transfer rational amounts of weight; therefore we
introduce a new model of fractional acquisition, which we call the normalized model. Let each vertex start with weight 0,
and move finite positive amounts of weight, allowing negative weights on vertices. As with fractional acquisition moves,
movingweight from u to v is valid only if the weight on v is at least the weight on u. A protocol of suchmoves is a normalized
protocol; all normalized protocols we use are finite in length. In the normalized model, the vertex weights always sum to 0.
A weight distribution where the weights sum to 0 is called a normalized weight distribution.

For the proof of Theorem 1, it suffices to consider only normalized acquisition moves that transfer integer amounts of
weight. When convenient, we will refer to the units of weight that are moving around the graph as chips. When working
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