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a b s t r a c t

Let G be a graph class. The square root of G contains all graphs whose squares belong in G.
We prove that if G is non-trivial and minor closed, then all graphs in its square root have
carving-width bounded by some constant depending only on G. As a consequence, every
square root of such a graph class has a linear time recognition algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a graph class. The square root of G is defined as the graph class
G = {G | G2

∈ G},

where the square G2 of a graph G is the graph obtained from G after adding edges between all pairs of vertices that share a
common neighbor.

In [3], Harary, Karp, and Tutte provided a complete characterization of the graphs in
√

P whereP is the class of all planar
graphs. Notice that planar graphs are minor closed, i.e. a minor of every graph in P also belongs in P . Minor closeness is a
very general property that is satisfied by a great variety of graph classes; see e.g. [6].

According to the characterization of [3], all graphs in
√

P are outerplanar and have bounded degree. This implies that
graphs in

√
P have a very specific ‘‘tree-like’’ structure and it is a natural question whether this is the case for more general

minor closed graph classes. In this paper we extend this result, in the sense that the same tree-like property holds for every
minor closed graph class that is non-trivial (i.e. that does not contain all graphs). In fact, we prove (in Section 3) that, in this
case, the correct ‘‘tree-likeness’’ property is given by the parameter of carving-width, introduced by Seymour and Thomas
in [11]. As a consequence, we prove in Section 4 that the square root of any non-trivial minor closed graph class has a
linear time recognition algorithm. This extends the algorithmic results of [5] where a linear time algorithm was given for
recognizing the square roots of planar graphs.
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2. Definitions

We next give some definitions that are necessary in order to formally define carving width. This will permit us to give
the formal statement of our combinatorial result.
Boundaries in graphs and hypergraphs. In this paper we deal with graphs and hypergraphs. For a (hyper)graph G we denote
by V (G) its vertex set and by E(G) the set of its (hyper)edges. If S ⊆ V (G) (resp. F ⊆ E(G)) we denote S = V (G) \ S (resp.
F = E(G) \ F ).

Given a vertex set S ⊆ V (G), let EG(S) be the set of hyperedges containing vertices in S. For simplicity we also denote
EG(v) = EG({v}). We also define ∆(G) = max{|EG(v)| | v ∈ V (G)}. Given a set S ⊆ V (G), we define

∂G(S) = EG(S) ∩ EG(S).

Notice that ∂G is a symmetric function, i.e. for every S ⊆ V (G), it holds that ∂G(S) = ∂G(S). Also given a set F ⊆ E(G), we set

∂∗

G(F) =


f∈F

f


∩


f∈F

f

 .

Given a hypergraph G we define its dual as the hypergraph

G∗
= (E(G), {EG(v) | v ∈ V (G)}).

Notice that the hypergraphs G and G∗ have the same incidence graph with the roles of their two parts reversed. Given a set
S ⊆ V (G) (resp. F ⊆ E(G)) we denote by S∗ (resp. F∗) their dual hyperedges (resp. vertices) in G∗.

Using duality, we also define ∆∗(G) = ∆(G∗). Clearly, for a simple graph G, ∆∗(G) = 2. Moreover, the above definitions
imply that for every F ⊆ E(G), (∂∗

G(F))∗ = ∂G∗(F∗).
A graph H is a minor of a graph G, and we write H ≤ G, if H can be obtained for some subgraph of G after contracting

edges (the contracting an edge e = {x, y} is the operation that removes x and y from G and introduces a new vertex ve that
is made adjacent with all the neighbors of x and y in G, except from x and y). A graph class G is minor closed if every minor
of a graph in G is also a graph in G.
Carving-width. Given a tree T we denote the set of its leaves by L(T ) and we call it ternary if all vertices in V (T ) \ L(T ) have
degree 3. A carving decomposition of a hypergraph G is a pair (T , ρ), where T is a ternary tree and ρ is a bijection from V (G) to
L(T ). The bridge functionβ : E(T ) → 2E(G) of a carving decompositionmaps every edge e of T to the set ∂G(ρ−1(L(T ′)))where
T ′ is one of the two connected components of T \ e. The width of (T , ρ) is equal to maxe∈E(T ) |β(e)| and the carving-width of
G, cw(G), is the minimumwidth over all carving decompositions of G. The following observation is a direct consequence of
the definitions.

Observation 1. For every hypergraph G, it holds that ∆(G) ≤ cw(G).

The main combinatorial result of this paper is the following.

Theorem 1. For every non-trivial minor closed graph classG there is a constant cG such that all graphs in
√

G have carving-width
at most cG.

The proof of Theorem 1 uses the parameter of branch-width defined in [8].
Branch-width. A branch decomposition of a graph G is a pair (T , τ ), where T is a ternary tree and τ is a bijection from E(G) to
L(T ). The boundary function ω : E(T ) → 2V (G) of a branch decomposition maps every edge e of T to the set ∂∗

G(ρ−1(L(T ′)))
where T ′ is one of the two connected components of T −{e}. Thewidth of (T , τ ) is equal to maxe∈E(T ) |ω(e)| and the branch-
width of G, bw(G), is the minimum width over all branch decompositions of G.

The following observation is a direct consequence of the duality between the functions ∂G and ∂∗

G .

Observation 2. For every hypergraph G it holds that bw(G) = cw(G∗).

3. Walls and squares

Walls. A wall of height k, k ≥ 1, is obtained from a ((k + 1) × (2k + 2))-grid with vertices (x, y), x ∈ {0, . . . , 2k + 1}, y ∈

{0, . . . , k}, after removing the ‘‘vertical’’ edges {(x, y), (x, y + 1)} for odd x + y. We denote such a wall by Wk. A subdivided
wall of height k is obtained by the wall Wk with some edges of Wk replaced by paths without common internal vertices. If,
in such a subdivided wall, all edges have been subdivided at least once, then we say that it is properly subdivided. We also
say that a graph H is topological minor of a graph G if some subdivision of H is a subgraph of G.

The following result follows from the results in [7,8].

Proposition 1 ([7,8]). There is a function g : N → N such that every graph G with branchwidth at least g(k) contains the
(k × k)-grid as a minor.
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