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a b s t r a c t

In contrast to undirected width measures such as tree-width, which have provided many
important algorithmic applications, analogous measures for digraphs such as directed
tree-width or DAG-width do not seem so successful. Several recent papers have given
some evidence on the negative side. We confirm and consolidate this overall picture by
thoroughly and exhaustively studying the complexity of a range of directed problems with
respect to various parameters, and by showing that they often remain NP-hard even on
graph classes that are restricted very beyond having small DAG-width. On the positive side,
it turns out that clique-width (of digraphs) performsmuchbetter on virtually all considered
problems, from the parameterized complexity point of view.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The very successful concept of graph tree-widthwas introduced in the context of the Graph Minors project by Robertson
and Seymour [55,56], and it turned out to be very useful for efficiently solving many graph problems (including NP-hard
ones). In a nutshell, tree-width measures tree-likeness of a graph. Trees themselves, for example, have tree-width one and
series–parallel graphs have tree-width two. Many graphs occurring in practical applications have small tree-width. This
comes as no big surprise as one often dealswith hierarchical structures that are inherently similar to trees. Examples include
problems in VLSI design, evolution theory, interval routing, and the control-flow graphs of structured programs. See [6–8,38]
for surveys.

Tree-width is a property of undirected graphs. In this paperwewill be interested in digraphs (directed graphs). Naturally, a
widthmeasure specifically tailored to digraphs with all the nice properties of tree-widthwould be tremendously useful. We
can, of course, apply the concept of tree-width to digraphs, too, if we just forget the direction of all edges for the computation
of the tree-width and the resulting tree decomposition. With such an approach we, however, seem to ignore too much: for
example, in directed acyclic graphs (DAGs) it is easy to find a longest path while the problem is NP-complete in general.
Nevertheless, DAGs have unbounded tree-width if we forget the directions.

On the search for a ‘‘truly directed’’ width measure inspired by tree-width, several suggestions were made, starting with
directed tree-width [41], and being complemented recently with several new approaches including directed path-width [3],
entanglement [5], D-width [57], DAG-width [4] and Kelly-width [39].
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Some positive results were encouraging: the Hamiltonian path problem can be solved in polynomial time if the directed
tree width, the DAG-width, or the Kelly-width are bounded by a constant [41]. More recently, it has been shown that parity
games (Section 4.9) can be solved in polynomial time on digraphs of bounded entanglement [5], DAG-width [4] or Kelly-
width [39].

Unfortunately, as encouraging as the first positive results are, there is also the negative side. For undirected graphs, the
existence of a Hamiltonian path can be tested in linear time if the tree-width is bounded by a constant; only the constant
hidden in the ‘‘big-O’’ increases with the tree-width. So this problem is fixed-parameter tractable (captured in the complexity
class FPT, Section 2.3) for the parameter tree-width. While Hamiltonian path on digraphs is indeed solvable in polynomial
time for bounded DAG-width, the degree of the polynomial in the running time increases with the DAG-width (in the
complexity class XP, Section 2.3). This likely cannot be improved (unless the Exponential-time hypothesis fails) since Lampis,
Kaouri, and Mitsou showed that Hamiltonian path is W[2]-hard for the parameter DAG-width [48].

Even worse, many other natural problems remain NP-hard on digraphs of low widths [14,15,46,48] and some of them
are already NP-complete on DAGs—such asMaxDiCut [48] or oriented colouring [14]. This particularly implies that for DAG-
width there cannot be a result similar to famous Courcelle’s MSO2 theorem. Therefore, one should perhaps look for other
new directed measures providing a ‘‘finer resolution’’ on DAGs.

Wewill addmanymore natural directed problems to the list, but will go even further: one of themain goals of this paper
is to show that not only many problems are hard on DAGs, but rather that they remain hard even if we very severely further
restrict the digraphs’ structure. To this end, we introduce two new digraph measures; K-width (Section 3.4) and DAG-depth
(Section 3.3), with the intention to complete the full (and rather negative) picture of structural digraph width parameters
with some more restrictive ones.

On the other hand, onewidthmeasure that faresmuch better is clique-width [13], an algebraicwidthmeasure that equally
handles graphs and digraphs (and related bi-rank-width generalizing the rank-width of undirected graphs [42]). Nearly all
of our problems are fixed-parameter tractable or at least in XP with respect to this parameter. Even better, unlike as for
DAG-width or Kelly-width, finding an optimal bi-rank-decomposition is known to be in FPT [37,42].

2. Preliminaries

2.1. Digraphs

We assume that the readers are familiar with standard terms of undirected graphs, for example in Diestel [16].
A directed graph (or digraph) is a pair (V , E) of disjoint sets of vertices and arcs, together with two mappings tail : E → V

and head : E → V assigning to every arc e its starting vertex x = tail(e) and terminal vertex y = head(e) (e is said to be
directed from x to y). Note that a digraph may have several arcs between the same two vertices x, y. If two of them have the
same direction (say from x to y), they are called parallel. If x = y, then e is called a loop. We will sometimes refer an arc from
x to y as to (x, y).

A directed path is a digraph of the form: V = {x0, x1, x2, . . . , xk}, E = {(x0, x1), (x1, x2), . . . , (xk−1, xk)} where xi are all
distinct; intuitively, x0 and xk are called the endpoints of the directed path. The length of a directed path is defined as the
number of its arcs. Two directed paths P1 and P2 are internally disjoint if they are vertex disjoint except for their endpoints.
A directed cycle is a directed path with an additional arc (xk, x0). A directed acyclic graph (DAG) is a digraph with no directed
cycles.

Many terms of undirected graphs are naturally extended to digraphs, like those of subgraph/subdigraph and of
isomorphism. Given two vertices x, y, we say that y is an out-neighbour (in-neighbour) of x if there exists an arc (x, y) ((y, x),
respectively). We say that y is reachable from x if there exists a directed path from x to y. A digraph G is strongly connected
if each of its vertices is reachable from any other one. Strong components of G are the equivalence classes defined by the
relation x ∼ ymeaning that x is reachable from y and y is reachable from x.

2.2. SAT and its variants

We define the Boolean Satisfiability problem (abbreviated as SAT). A literal is a positive propositional variable x or a
negative variable ¬x. A clause is a finite set of literals, e.g., C = x1 ∨ x2 ∨ ¬x3. A propositional formula φ in conjunctive
normal form, or CNF formula for short, is a set of clauses φ = C1 ∧ · · · ∧ Cp. A CNF formula is a c-CNF formula if each clause
contains at most c literals. Let var(φ) denote the set of variables of φ.

A CNF formula φ is satisfiable if there is a truth assignment of var(φ) for which φ evaluates to true, otherwise F is
unsatisfiable. SAT is the NP-complete problem of deciding whether a given CNF formula is satisfiable [11,49]. Analogously,
c-SAT is the problem of deciding whether a given c-CNF formula is satisfiable. Based on the value of c we have the following
distinction:

Theorem 2.1 ([47]). 2-SAT can be solved in polynomial time.

Theorem 2.2 ([30], Folklore). The 3-SAT problem remains NP-complete even if the input CNF formula satisfies all the following
conditions
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