Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree

^a School of Science, Shandong Jiaotong University, Jinan, 250023, PR China ^b School of Mathematics, Shandong University, Jinan, 250100, PR China

^c School of Management, Shandong University, Jinan, 250100, PR China

ARTICLE INFO

Article history: Received 26 November 2011 Received in revised form 6 October 2013 Accepted 7 October 2013 Available online 1 November 2013

Keywords: Proper colorings Neighbor sum distinguishing edge colorings Maximum average degree

ABSTRACT

A proper [k]-edge coloring of a graph *G* is a proper edge coloring of *G* using colors of the set [k], where [k] = {1, 2, ..., k}. A neighbor sum distinguishing [k]-edge coloring of *G* is a proper [k]-edge coloring of *G* such that, for each edge $uv \in E(G)$, the sum of colors taken on the edges incident with *u* is different from the sum of colors taken on the edges incident with *v*. By $ndi_{\Sigma}(G)$, we denote the smallest value *k* in such a coloring of *G*. The average degree of a graph *G* is $\frac{\sum v \in V(G) d(v)}{|V(G)|}$; we denote it by ad(G). The maximum average degree mad(G) of *G* is the maximum of average degrees of its subgraphs. In this paper, we show that, if *G* is a graph without isolated edges and $mad(G) \leq \frac{5}{2}$, then $ndi_{\Sigma}(G) \leq k$, where $k = \max{\Delta(G) + 1, 6}$. This partially confirms the conjecture proposed by Flandrin et al. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [5]. Let G = (V, E) be a graph. We use the symbols V(G), E(G), $\Delta(G)$, and $\delta(G)$ to denote the vertex set, edge set, maximum degree, and minimum degree of G, respectively. Let $d_G(v)$, or simply d(v), denote the degree of a vertex v in G. A vertex v is called a k-vertex (respectively, k^- -vertex), if d(v) = k (respectively, $d(v) \leq k$). A vertex v is called a *leaf* of G if d(v) = 1. If d(v) = 2 and the two neighbors of v are a d_1 -vertex and a d_2 -vertex, respectively, vertex v is called a (d_1, d_2) -vertex. Similarly, we can define a (d_1, d_2^-) -vertex and a (d_1, d_2^+) -vertex. The girth of a graph G is the length of a shortest cycle in G, and we denote it by g(G). The average degree ad(G) of a graph G is $\frac{\sum_{v \in V(G)} d(v)}{|V(G)|}$. The maximum average degree mad(G) of G is the maximum of the average degrees of its subgraphs.

Let [k] be a set of Colors, where $[k] = \{1, 2, ..., k\}$, and let c be an edge coloring of G for which $c : E(G) \to [k]$. By w(v)(respectively, S(v)), we denote the sum (respectively, set) of colors taken on the edges incident with v; i.e., $w(v) = \sum_{uv \in E(G)} c(uv)$ (respectively, $S(v) = \{c(uv) | uv \in E(G)\}$). If the coloring c is proper, then we call the coloring c such that $w(v) \neq w(u)$ (respectively, $S(u) \neq S(v)$) for each edge $uv \in E(G)$ a *neighbor sum distinguishing* (respectively, *neighbor distinguishing*) [k]-edge-weighting. By $ndi_{\Sigma}(G)$ (respectively, ndi(G)), we denote the smallest value k such that G has a neighbor sum distinguishing (respectively, *neighbor distinguishing*) [k]-edge coloring of G.

In 2004, Karoński et al. [12] introduced the notion of vertex-coloring [*k*]-edge-weighting and brought forward the following conjecture.

^{*} Corresponding author. Tel.: +86 15165051446; fax: +86 53188363455. *E-mail address:* ghwang@sdu.edu.cn (G. Wang).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.10.009

Conjecture 1 (1–2–3-Conjecture [12]). Every graph without isolated edges admits a vertex-coloring 3-edge-weighting.

Addario-Berry et al. [1] showed that every graph without isolated edges admits a vertex-coloring 30-edge-weighting. This bound was improved to 16 by Addario-Berry et al. [2], and later improved to 13 by [21]. Recently, Kalkowski et al. [11] showed that every graph without isolated edges admits a vertex-coloring 5-edge-weighting.

We know that, to have a neighbor sum distinguishing (neighbor distinguishing) coloring, *G* cannot have an isolated edge (we call it normal). Apparently, for any normal graph *G*, $ndi(G) \le ndi_{\Sigma}(G)$. In 2002, Zhang et al. [22] proposed the following conjecture.

Conjecture 2 ([11]). If G is a normal graph with at least six vertices, then $ndi(G) \leq \Delta(G) + 2$.

Balister et al. [4] proved Conjecture 2 for bipartite graphs and for graphs *G* with $\Delta(G) = 3$. If *G* is bipartite planar with maximum degree $\Delta(G) \geq 12$, Conjecture 2 was confirmed by Edwards et al. [8]. Hatami [10] showed that, if *G* is a normal graph and $\Delta(G) > 10^{20}$, then $ndi(G) \leq \Delta(G) + 300$. Akbari et al. [3] proved that $ndi(G) \leq 3\Delta(G)$ for any normal graph. Bu et al. [6] proved Conjecture 2 for planar graphs of girth at least 6. Wang et al. [18,19] confirmed Conjecture 2 for sparse graphs and K_4 -minor free graphs. More precisely, in [18], the authors showed that, if *G* is a normal graph, $mad(G) < \frac{5}{2}$, then $ndi(G) \leq \Delta(G) + 1$ and $ndi(G) = \Delta(G) + 1$ if and only if *G* has two adjacent $\Delta(G)$ -vertices.

Recently, Flandrin et al. [9] studied the neighbor sum distinguishing colorings for cycles, trees, complete graphs, and complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 3 ([9]). If G is a connected graph on at least three vertices and $G \neq C_5$, then $\Delta(G) \leq ndi_{\Sigma}(G) \leq \Delta(G) + 2$.

Flandrin et al. [9] gave an upper bound for each connected graph *G* with maximum degree $\Delta \ge 2$.

Theorem 1.1 ([9]). For each connected graph with maximum degree $\Delta \geq 2$, we have $ndi_{\Sigma}(G) \leq \lceil \frac{7\Delta-4}{2} \rceil$.

Wang and Yan [20] improved this bound to $\lceil \frac{10\Delta(G)+2}{3} \rceil$. Recently, Przybyło [16] proved that $nsdi(G) \le 2\Delta(G) + col(G) - 1$, where col(G) is the *coloring number* of *G*, which is defined as the least integer *k* such that *G* has a vertex enumeration in which each vertex is preceded by fewer than *k* of its neighbors; hence $col(G) - 1 \le \Delta(G)$, and thus $2\Delta(G) + col(G) - 1 \le 3\Delta(G)$. Dong et al. [7] considered the neighbor sum distinguishing colorings of planar graphs and showed the following result.

Theorem 1.2 ([7]). If G is a normal planar graph, then $ndi_{\Sigma}(G) \leq max\{2\Delta(G) + 1, 25\}$.

Later, Wang et al. [17] improved this bound to max{ $\Delta(G) + 10, 25$ }. In this paper, we will prove the following results.

Theorem 1.3. Let G be a normal graph. If $mad(G) \leq \frac{5}{2}$, then $ndi_{\Sigma}(G) \leq k$, where $k = ma\{\Delta(G) + 1, 6\}$.

Corollary 1.1. Let G be a normal graph. If $mad(G) \leq \frac{5}{2}$, $\Delta(G) \geq 5$, then $ndi_{\Sigma}(G) \leq \Delta(G) + 1$.

It is well known that, if G is a planar graph with girth g, then $mad(G) < \frac{2g}{g-2}$, so the following corollary is obvious.

Corollary 1.2. Let G be a normal planar graph. If $g(G) \ge 10$ and $\Delta(G) \ge 5$, then $ndi_{\Sigma}(G) \le \Delta(G) + 1$.

Note that, if *G* contains two adjacent vertices of maximum degree, then $ndi_{\sum}(G) \ge \Delta(G) + 1$. So the bound $\Delta(G) + 1$ in Corollary 1.1 is sharp. Furthermore, Corollary 1.1 implies a result of Wang et al. [18] on the neighbor distinguishing coloring of sparse graphs. For neighbor sum distinguishing total colorings, see [13–15].

2. Preliminaries

First, we give some lemmas.

Lemma 2.1 ([9]). If $m = 0 \pmod{3}$, then $ndi_{\sum}(C_m) = 3$; otherwise, $ndi_{\sum}(C_m) = 4$.

In the following lemmas, all the elements in each set are positive integers.

Lemma 2.2. Let S_1 , S_2 be two sets, and let $S_3 = \{a + b \mid a \in S_1, b \in S_2, a \neq b\}$. If $|S_1| = k, k \ge 3, |S_2| = 2$, then $|S_3| \ge k$. **Proof.** Let $S_1 = \{x_1, ..., x_k\}, x_1 < \cdots < x_k, S_2 = \{m, M\}, m < M$. Clearly, the set $(\{x_1 + m, ..., x_k + m\} \setminus \{2m\}) \cup \{z\}$, where $z = x_k + M$ if $x_k \neq M, z = x_{k-1} + M$ if $x_{k-1} \neq m$ and $x_k = M$, and $z = x_{k-2} + M$ if $x_{k-1} = m$ and $x_k = M$, has at least k elements. \Box

Lemma 2.3. Let S_1, S_2 be two sets, and let $S_3 = \{\alpha + \beta \mid \alpha \in S_1, \beta \in S_2, \alpha \neq \beta\}$. If $|S_1| = |S_2| = 2$ and $S_1 \neq S_2$, then $|S_3| \ge 3$.

Proof. Since $S_1 \neq S_2$, we have $|S_1 \cap S_2| \leq 1$. If $|S_1 \cap S_2| = 1$, then we assume that $S_1 = \{x_1, x_2\}$ and $S_2 = \{x_1, y\}$. Clearly, $\{x_1 + y, x_1 + x_2, x_2 + y\} \subseteq S_3$. Hence $|S_3| \geq 3$. Otherwise, $|S_1 \cap S_2| = 0$. Without loss of generality, let $S_1 = \{x_1, x_2\}$, $S_2 = \{y_1, y_2\}$ such that $x_1 < x_2, y_1 < y_2$. Then $\{x_1 + y_1, x_1 + y_2, x_2 + y_2\} \subseteq S_3$. So we have $|S_3| \geq 3$. \Box

The following lemma is obvious, so we omit the proof.

Lemma 2.4. Let S be a set of size k + 1. Let $S_1 = \{\sum_{i=1}^k x_i \mid x_i \in S, x_i \neq x_j, if i \neq j, 1 \le i, j \le k\}$. Then $|S_1| \ge k + 1$.

Download English Version:

https://daneshyari.com/en/article/6872299

Download Persian Version:

https://daneshyari.com/article/6872299

Daneshyari.com