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a proper [k]-edge coloring of G such that, for each edge uv € E(G), the sum of colors taken
on the edges incident with u is different from the sum of colors taken on the edges incident
with v. By ndiy-(G), we denote the smallest value k in such a coloring of G. The average

. d . .
Keywords: degree of a graph G is W; we denote it by ad(G). The maximum average degree
Proper colorings mad(G) of G is the maximum of average degrees of its subgraphs. In this paper, we show

Neighbor sum distinguishing edge colorings

! that, if G is a graph without isolated edges and mad(G) < 2, then ndiy~(G) < k, where
Maximum average degree 2

k = max{A(G) + 1, 6}. This partially confirms the conjecture proposed by Flandrin et al.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [5]. Let G = (V, E) be a graph. We use the
symbols V(G), E(G), A(G), and §(G) to denote the vertex set, edge set, maximum degree, and minimum degree of G, respec-
tively. Let d¢(v), or simply d(v), denote the degree of a vertex v in G. A vertex v is called a k-vertex (respectively, k™ -vertex),
if d(v) = k (respectively, d(v) < k). A vertex v is called a leaf of G if d(v) = 1.1f d(v) = 2 and the two neighbors of v are a
di-vertex and a d,-vertex, respectively, vertex v is called a (dy, d,)-vertex. Similarly, we can define a (d;, d; )-vertex and a
(dq, d;)—vertex. The girth of a graph G is the length of a shortest cycle in G, and we denote it by g(G). The average degree ad(G)

. 8 d(v . . . .
ofagraphGis % The maximum average degree mad(G) of G is the maximum of the average degrees of its subgraphs.

Let [k] be a set of colors, where [k] = {1, 2, ..., k}, and let ¢ be an edge coloring of G for which ¢ : E(G) — [k]. By w(v)
(respectively, S(v)), we denote the sum (respectively, set) of colors taken on the edges incident with v; i.e., w(v) = ZuveE(G)
c(uv) (respectively, S(v) = {c(uv)|uv € E(G)}).If the coloring c is proper, then we call the coloring ¢ such that w(v) # w(u)
(respectively, S(u) # S(v)) for each edge uv € E(G) a neighbor sum distinguishing (respectively, neighbor distinguishing) [k]-
edge coloring of G. If c is not assumed to be proper, then the coloring c such that w(v) # w(u) is called vertex-coloring
[k]-edge-weighting. By ndiy~(G) (respectively, ndi(G)), we denote the smallest value k such that G has a neighbor sum dis-
tinguishing (respectively, neighbor distinguishing) [k]-edge coloring of G.

In 2004, Karoriski et al. [12] introduced the notion of vertex-coloring [k]-edge-weighting and brought forward the fol-
lowing conjecture.
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Conjecture 1 (1-2-3-Conjecture [12]). Every graph without isolated edges admits a vertex-coloring 3-edge-weighting.

Addario-Berry et al. [1] showed that every graph without isolated edges admits a vertex-coloring 30-edge-weighting.
This bound was improved to 16 by Addario-Berry et al. [2], and later improved to 13 by [21]. Recently, Kalkowski et al. [11]
showed that every graph without isolated edges admits a vertex-coloring 5-edge-weighting.

We know that, to have a neighbor sum distinguishing (neighbor distinguishing) coloring, G cannot have an isolated edge
(we call it normal). Apparently, for any normal graph G, ndi(G) < ndis(G).In 2002, Zhang et al. [22] proposed the following
conjecture.

Conjecture 2 ([11]). If G is a normal graph with at least six vertices, then ndi(G) < A(G) + 2.

Balister et al. [4] proved Conjecture 2 for bipartite graphs and for graphs G with A(G) = 3. If G is bipartite planar with
maximum degree A(G) > 12, Conjecture 2 was confirmed by Edwards et al. [8]. Hatami [10] showed that, if G is a normal
graph and A(G) > 10%°, then ndi(G) < A(G) + 300. Akbari et al. [3] proved that ndi(G) < 3A(G) for any normal graph. Bu
etal. [6] proved Conjecture 2 for planar graphs of girth at least 6. Wang et al. [ 18,19] confirmed Conjecture 2 for sparse graphs
and K4-minor free graphs. More precisely, in [ 18], the authors showed that, if Gis a normal graph, mad(G) < % thenndi(G) <
A(G) + 1and ndi(G) = A(G) + 1if and only if G has two adjacent A(G)-vertices.

Recently, Flandrin et al. [9] studied the neighbor sum distinguishing colorings for cycles, trees, complete graphs, and
complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 3 ([9]). If G is a connected graph on at least three vertices and G # Cs, then A(G) < ndiy-(G) < A(G) + 2.

Flandrin et al. [9] gave an upper bound for each connected graph G with maximum degree A > 2.
Theorem 1.1 ([9]). For each connected graph with maximum degree A > 2, we have ndiy-(G) < |'7A2—_4].

Wang and Yan [20] improved this bound to [ 124$2*27 Recently, Przybyto [ 16] proved that nsdi(G) < 2A(G)+col(G)—1,
where col(G) is the coloring number of G, which is defined as the least integer k such that G has a vertex enumeration in which
each vertex is preceded by fewer than k of its neighbors; hence col(G) — 1 < A(G), and thus 2A(G) + col(G) — 1 < 3A(G).
Dong et al. [7] considered the neighbor sum distinguishing colorings of planar graphs and showed the following result.

Theorem 1.2 ([7]). If G is a normal planar graph, then ndis-(G) < max{2A(G) + 1, 25}.
Later, Wang et al. [17] improved this bound to max{A(G) + 10, 25}. In this paper, we will prove the following results.

Theorem 1.3. Let G be a normal graph. If mad(G) < % then ndis~(G) < k, where k = max{A(G) + 1, 6}.

Corollary 1.1. Let G be a normal graph. If mad(G) < %, A(G) = 5, then ndiy-(G) < A(G) + 1.

It is well known that, if G is a planar graph with girth g, then mad(G) < gfgz, so the following corollary is obvious.

Corollary 1.2. Let G be a normal planar graph. If g(G) > 10 and A(G) > 5, then ndis~(G) < A(G) + 1.

Note that, if G contains two adjacent vertices of maximum degree, then ndiy-(G) > A(G) + 1. So the bound A(G) + 1in
Corollary 1.1 is sharp. Furthermore, Corollary 1.1 implies a result of Wang et al. [ 18] on the neighbor distinguishing coloring
of sparse graphs. For neighbor sum distinguishing total colorings, see [13-15].

2. Preliminaries

First, we give some lemmas.
Lemma 2.1 ([9)). If m = 0 (mod 3), then ndiy-(Gy) = 3; otherwise, ndiy-(Cy) = 4.
In the following lemmas, all the elements in each set are positive integers.
Lemma 2.2. Let S, S; be two sets, and let S3s ={a+b|a €Sy, b€ Sy, a#b).If |S1]| =k, k> 3,|Sz| =2, then |S3]| > k.

Proof. LetS; = {x1,...,x}, %1 < -+ < X, Sy = {m, M}, m < M. Clearly, the set ({x; + m, ..., x, + m} \ {2m}) U {z},
wherez =x, + M ifxy # M,z = X1 + M ifx,_1 # mand x, = M,and z = x;_» + M if x,_; = mand x, = M, has at least
k elements. O

Lemma 2.3. Let S,S; be two sets,and let S3 = {a + B | ¢ € S$1,8 € S, # B} If |S1| = |S2] = 2and S; # S, then
[S3] > 3.

Proof. Since S; # S, we have [S; N S| < 1.1f|S; N S;| = 1, then we assume that S; = {x1, x,} and S, = {x;, y}. Clearly,
{x1 +y,x1 + x2, %X, +y} C S3. Hence |S3| > 3. Otherwise, |S; N S| = 0. Without loss of generality, let S; = {x1, X2},
Sy = {y1,y2} such that x; < x5, y1 < y».Then {x1 + y1, x1 + y2, X2 + y2} € S3.Sowe have |S3]| > 3. O

The following lemma is obvious, so we omit the proof.

Lemma 2.4. Let S be a set of size k + 1. Let S; = {Zf;lxi [Xi€S,xi #x;, if i#j,1<i,j <k} Then|S;| > k+ 1.



Download English Version:

https://daneshyari.com/en/article/6872299

Download Persian Version:

https://daneshyari.com/article/6872299

Daneshyari.com


https://daneshyari.com/en/article/6872299
https://daneshyari.com/article/6872299
https://daneshyari.com

