Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree

Aijun Dong ${ }^{\text {a }}$, Guanghui Wang ${ }^{\text {b,* }}$, Jianghua Zhang ${ }^{\text {c }}$
a School of Science, Shandong Jiaotong University, Jinan, 250023, PR China
${ }^{\text {b }}$ School of Mathematics, Shandong University, Jinan, 250100, PR China
c School of Management, Shandong University, Jinan, 250100, PR China

ARTICLE INFO

Article history:

Received 26 November 2011
Received in revised form 6 October 2013
Accepted 7 October 2013
Available online 1 November 2013

Keywords:

Proper colorings
Neighbor sum distinguishing edge colorings Maximum average degree

Abstract

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors of the set $[k]$, where $[k]=\{1,2, \ldots, k\}$. A neighbor sum distinguishing [k]-edge coloring of G is a proper [k]-edge coloring of G such that, for each edge $u v \in E(G)$, the sum of colors taken on the edges incident with u is different from the sum of colors taken on the edges incident with v. By $n d i_{\Sigma}(G)$, we denote the smallest value k in such a coloring of G. The average degree of a graph G is $\frac{\sum_{v \in V(G)} d(v)}{|V(G)|}$; we denote it by $\operatorname{ad}(G)$. The maximum average degree $\operatorname{mad}(G)$ of G is the maximum of average degrees of its subgraphs. In this paper, we show that, if G is a graph without isolated edges and $\operatorname{mad}(G) \leq \frac{5}{2}$, then $\operatorname{ndi} \sum_{\Sigma}(G) \leq k$, where $k=\max \{\Delta(G)+1,6\}$. This partially confirms the conjecture proposed by Flandrin et al.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [5]. Let $G=(V, E)$ be a graph. We use the symbols $V(G), E(G), \Delta(G)$, and $\delta(G)$ to denote the vertex set, edge set, maximum degree, and minimum degree of G, respectively. Let $d_{G}(v)$, or simply $d(v)$, denote the degree of a vertex v in G. A vertex v is called a k-vertex (respectively, k^{-}-vertex), if $d(v)=k$ (respectively, $d(v) \leq k$). A vertex v is called a leaf of G if $d(v)=1$. If $d(v)=2$ and the two neighbors of v are a d_{1}-vertex and a d_{2}-vertex, respectively, vertex v is called a (d_{1}, d_{2})-vertex. Similarly, we can define a $\left(d_{1}, d_{2}^{-}\right)$-vertex and a $\left(d_{1}, d_{2}^{+}\right)$-vertex. The girth of a graph G is the length of a shortest cycle in G, and we denote it by $g(G)$. The average degree ad (G) of a graph G is $\frac{\sum_{v \in V(G)} d(v)}{|V(G)|}$. The maximum average degree $\operatorname{mad}(G)$ of G is the maximum of the average degrees of its subgraphs.

Let $[k]$ be a set of colors, where $[k]=\{1,2, \ldots, k\}$, and let c be an edge coloring of G for which $c: E(G) \rightarrow[k]$. By $w(v)$ (respectively, $S(v)$), we denote the sum (respectively, set) of colors taken on the edges incident with v; i.e., $w(v)=\sum_{u v \in E(G)}$ $c(u v)$ (respectively, $S(v)=\{c(u v) \mid u v \in E(G)\}$). If the coloring c is proper, then we call the coloring c such that $w(v) \neq w(u)$ (respectively, $S(u) \neq S(v)$) for each edge $u v \in E(G)$ a neighbor sum distinguishing (respectively, neighbor distinguishing) [k]edge coloring of G. If c is not assumed to be proper, then the coloring c such that $w(v) \neq w(u)$ is called vertex-coloring [k]-edge-weighting. By $n d i_{\sum}(G)$ (respectively, $n d i(G)$), we denote the smallest value k such that G has a neighbor sum distinguishing (respectively, neighbor distinguishing) [k]-edge coloring of G.

In 2004, Karoński et al. [12] introduced the notion of vertex-coloring [k]-edge-weighting and brought forward the following conjecture.

[^0]Conjecture 1 (1-2-3-Conjecture [12]). Every graph without isolated edges admits a vertex-coloring 3-edge-weighting.
Addario-Berry et al. [1] showed that every graph without isolated edges admits a vertex-coloring 30-edge-weighting. This bound was improved to 16 by Addario-Berry et al. [2], and later improved to 13 by [21]. Recently, Kalkowski et al. [11] showed that every graph without isolated edges admits a vertex-coloring 5-edge-weighting.

We know that, to have a neighbor sum distinguishing (neighbor distinguishing) coloring, G cannot have an isolated edge (we call it normal). Apparently, for any normal graph $G, \operatorname{ndi}(G) \leq n d i_{\Sigma}(G)$. In 2002, Zhang et al. [22] proposed the following conjecture.

Conjecture 2 ([11]). If G is a normal graph with at least six vertices, then $n d i(G) \leq \Delta(G)+2$.
Balister et al. [4] proved Conjecture 2 for bipartite graphs and for graphs G with $\Delta(G)=3$. If G is bipartite planar with maximum degree $\Delta(G) \geq 12$, Conjecture 2 was confirmed by Edwards et al. [8]. Hatami [10] showed that, if G is a normal graph and $\Delta(G)>10^{20}$, then $\operatorname{ndi}(G) \leq \Delta(G)+300$. Akbari et al. [3] proved that $n d i(G) \leq 3 \Delta(G)$ for any normal graph. Bu et al. [6] proved Conjecture 2 for planar graphs of girth at least 6 . Wang et al. $[18,19]$ confirmed Conjecture 2 for sparse graphs and K_{4}-minor free graphs. More precisely, in [18], the authors showed that, if G is a normal graph, $\operatorname{mad}(G)<\frac{5}{2}$, then $\operatorname{ndi}(G) \leq$ $\Delta(G)+1$ and $\operatorname{ndi}(G)=\Delta(G)+1$ if and only if G has two adjacent $\Delta(G)$-vertices.

Recently, Flandrin et al. [9] studied the neighbor sum distinguishing colorings for cycles, trees, complete graphs, and complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 3 ([9]). If G is a connected graph on at least three vertices and $G \neq C_{5}$, then $\Delta(G) \leq n d i_{\Sigma}(G) \leq \Delta(G)+2$.
Flandrin et al. [9] gave an upper bound for each connected graph G with maximum degree $\Delta \geq 2$.
Theorem 1.1 ([9]). For each connected graph with maximum degree $\Delta \geq 2$, we have $n d i_{\sum}(G) \leq\left\lceil\frac{7 \Delta-4}{2}\right\rceil$.
Wang and Yan [20] improved this bound to $\left\lceil\frac{10 \Delta(G)+2}{3}\right\rceil$. Recently, Przybyło [16] proved that $n s d i(G) \leq 2 \Delta(G)+\operatorname{col}(G)-1$, where $\operatorname{col}(G)$ is the coloring number of G, which is defined as the least integer k such that G has a vertex enumeration in which each vertex is preceded by fewer than k of its neighbors; hence $\operatorname{col}(G)-1 \leq \Delta(G)$, and thus $2 \Delta(G)+\operatorname{col}(G)-1 \leq 3 \Delta(G)$. Dong et al. [7] considered the neighbor sum distinguishing colorings of planar graphs and showed the following result.

Theorem 1.2 ([7]). If G is a normal planar graph, then $n d i_{\sum}(G) \leq \max \{2 \Delta(G)+1,25\}$.
Later, Wang et al. [17] improved this bound to $\max \{\Delta(G)+10,25\}$. In this paper, we will prove the following results.
Theorem 1.3. Let G be a normal graph. If $\operatorname{mad}(G) \leq \frac{5}{2}$, then $n d i_{\sum}(G) \leq k$, where $k=\max \{\Delta(G)+1,6\}$.
Corollary 1.1. Let G be a normal graph. If $\operatorname{mad}(G) \leq \frac{5}{2}, \Delta(G) \geq 5$, then ndi $\sum(G) \leq \Delta(G)+1$.
It is well known that, if G is a planar graph with girth g, then $\operatorname{mad}(G)<\frac{2 g}{g-2}$, so the following corollary is obvious.
Corollary 1.2. Let G be a normal planar graph. If $g(G) \geq 10$ and $\Delta(G) \geq 5$, then ndi $\sum_{\sum}(G) \leq \Delta(G)+1$.
Note that, if G contains two adjacent vertices of maximum degree, then $\operatorname{ndi}(G) \geq \Delta(G)+1$. So the bound $\Delta(G)+1$ in Corollary 1.1 is sharp. Furthermore, Corollary 1.1 implies a result of Wang et al. [18] on the neighbor distinguishing coloring of sparse graphs. For neighbor sum distinguishing total colorings, see [13-15].

2. Preliminaries

First, we give some lemmas.
Lemma 2.1 ([9]). If $m=0(\bmod 3)$, then $n d i_{\Sigma}\left(C_{m}\right)=3$; otherwise, $n d i_{\Sigma}\left(C_{m}\right)=4$.
In the following lemmas, all the elements in each set are positive integers.
Lemma 2.2. Let S_{1}, S_{2} be two sets, and let $S_{3}=\left\{a+b \mid a \in S_{1}, b \in S_{2}, a \neq b\right\}$. If $\left|S_{1}\right|=k, k \geq 3,\left|S_{2}\right|=2$, then $\left|S_{3}\right| \geq k$.
Proof. Let $S_{1}=\left\{x_{1}, \ldots, x_{k}\right\}, x_{1}<\cdots<x_{k}, S_{2}=\{m, M\}, m<M$. Clearly, the set $\left(\left\{x_{1}+m, \ldots, x_{k}+m\right\} \backslash\{2 m\}\right) \cup\{z\}$, where $z=x_{k}+M$ if $x_{k} \neq M, z=x_{k-1}+M$ if $x_{k-1} \neq m$ and $x_{k}=M$, and $z=x_{k-2}+M$ if $x_{k-1}=m$ and $x_{k}=M$, has at least k elements.

Lemma 2.3. Let S_{1}, S_{2} be two sets, and let $S_{3}=\left\{\alpha+\beta \mid \alpha \in S_{1}, \beta \in S_{2}, \alpha \neq \beta\right\}$. If $\left|S_{1}\right|=\left|S_{2}\right|=2$ and $S_{1} \neq S_{2}$, then $\left|S_{3}\right| \geq 3$.
Proof. Since $S_{1} \neq S_{2}$, we have $\left|S_{1} \cap S_{2}\right| \leq 1$. If $\left|S_{1} \cap S_{2}\right|=1$, then we assume that $S_{1}=\left\{x_{1}, x_{2}\right\}$ and $S_{2}=\left\{x_{1}, y\right\}$. Clearly, $\left\{x_{1}+y, x_{1}+x_{2}, x_{2}+y\right\} \subseteq S_{3}$. Hence $\left|S_{3}\right| \geq 3$. Otherwise, $\left|S_{1} \cap S_{2}\right|=0$. Without loss of generality, let $S_{1}=\left\{x_{1}, x_{2}\right\}$, $S_{2}=\left\{y_{1}, y_{2}\right\}$ such that $x_{1}<x_{2}, y_{1}<y_{2}$. Then $\left\{x_{1}+y_{1}, x_{1}+y_{2}, x_{2}+y_{2}\right\} \subseteq S_{3}$. So we have $\left|S_{3}\right| \geq 3$.

The following lemma is obvious, so we omit the proof.
Lemma 2.4. Let S be a set of size $k+1$. Let $S_{1}=\left\{\sum_{i=1}^{k} x_{i} \mid x_{i} \in S, x_{i} \neq x_{j}\right.$, if $\left.i \neq j, 1 \leq i, j \leq k\right\}$. Then $\left|S_{1}\right| \geq k+1$.

https://daneshyari.com/en/article/6872299

Download Persian Version:

https://daneshyari.com/article/6872299

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 15165051446; fax: +86 53188363455.

 E-mail address: ghwang@sdu.edu.cn (G. Wang).

