
Discrete Applied Mathematics 166 (2014) 84–90

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Neighbor sum distinguishing edge colorings of graphs with
bounded maximum average degree
Aijun Dong a, Guanghui Wang b,∗, Jianghua Zhang c

a School of Science, Shandong Jiaotong University, Jinan, 250023, PR China
b School of Mathematics, Shandong University, Jinan, 250100, PR China
c School of Management, Shandong University, Jinan, 250100, PR China

a r t i c l e i n f o

Article history:
Received 26 November 2011
Received in revised form 6 October 2013
Accepted 7 October 2013
Available online 1 November 2013

Keywords:
Proper colorings
Neighbor sum distinguishing edge colorings
Maximum average degree

a b s t r a c t

A proper [k]-edge coloring of a graph G is a proper edge coloring of G using colors of the
set [k], where [k] = {1, 2, . . . , k}. A neighbor sum distinguishing [k]-edge coloring of G is
a proper [k]-edge coloring of G such that, for each edge uv ∈ E(G), the sum of colors taken
on the edges incident with u is different from the sum of colors taken on the edges incident
with v. By ndi(G), we denote the smallest value k in such a coloring of G. The average

degree of a graph G is


v∈V (G) d(v)

|V (G)|
; we denote it by ad(G). The maximum average degree

mad(G) of G is the maximum of average degrees of its subgraphs. In this paper, we show
that, if G is a graph without isolated edges and mad(G) ≤

5
2 , then ndi(G) ≤ k, where

k = max{∆(G) + 1, 6}. This partially confirms the conjecture proposed by Flandrin et al.
© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [5]. Let G = (V , E) be a graph.We use the
symbols V (G), E(G), ∆(G), and δ(G) to denote the vertex set, edge set, maximum degree, and minimum degree of G, respec-
tively. Let dG(v), or simply d(v), denote the degree of a vertex v in G. A vertex v is called a k-vertex (respectively, k−-vertex),
if d(v) = k (respectively, d(v) ≤ k). A vertex v is called a leaf of G if d(v) = 1. If d(v) = 2 and the two neighbors of v are a
d1-vertex and a d2-vertex, respectively, vertex v is called a (d1, d2)-vertex. Similarly, we can define a (d1, d−

2 )-vertex and a
(d1, d+

2 )-vertex. The girth of a graphG is the length of a shortest cycle inG, andwe denote it by g(G). The average degree ad(G)

of a graph G is


v∈V (G) d(v)

|V (G)|
. Themaximum average degree mad(G) of G is themaximum of the average degrees of its subgraphs.

Let [k] be a set of colors, where [k] = {1, 2, . . . , k}, and let c be an edge coloring of G for which c : E(G) → [k]. By w(v)
(respectively, S(v)), we denote the sum (respectively, set) of colors taken on the edges incidentwith v; i.e.,w(v) =


uv∈E(G)

c(uv) (respectively, S(v) = {c(uv)|uv ∈ E(G)}). If the coloring c is proper, thenwe call the coloring c such thatw(v) ≠ w(u)
(respectively, S(u) ≠ S(v)) for each edge uv ∈ E(G) a neighbor sum distinguishing (respectively, neighbor distinguishing) [k]-
edge coloring of G. If c is not assumed to be proper, then the coloring c such that w(v) ≠ w(u) is called vertex-coloring
[k]-edge-weighting. By ndi(G) (respectively, ndi(G)), we denote the smallest value k such that G has a neighbor sum dis-
tinguishing (respectively, neighbor distinguishing) [k]-edge coloring of G.

In 2004, Karoński et al. [12] introduced the notion of vertex-coloring [k]-edge-weighting and brought forward the fol-
lowing conjecture.
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Conjecture 1 (1–2–3-Conjecture [12]). Every graph without isolated edges admits a vertex-coloring 3-edge-weighting.

Addario-Berry et al. [1] showed that every graph without isolated edges admits a vertex-coloring 30-edge-weighting.
This bound was improved to 16 by Addario-Berry et al. [2], and later improved to 13 by [21]. Recently, Kalkowski et al. [11]
showed that every graph without isolated edges admits a vertex-coloring 5-edge-weighting.

We know that, to have a neighbor sum distinguishing (neighbor distinguishing) coloring, G cannot have an isolated edge
(we call it normal). Apparently, for any normal graph G, ndi(G) ≤ ndiΣ (G). In 2002, Zhang et al. [22] proposed the following
conjecture.

Conjecture 2 ([11]). If G is a normal graph with at least six vertices, then ndi(G) ≤ ∆(G) + 2.

Balister et al. [4] proved Conjecture 2 for bipartite graphs and for graphs G with ∆(G) = 3. If G is bipartite planar with
maximum degree ∆(G) ≥ 12, Conjecture 2 was confirmed by Edwards et al. [8]. Hatami [10] showed that, if G is a normal
graph and ∆(G) > 1020, then ndi(G) ≤ ∆(G) + 300. Akbari et al. [3] proved that ndi(G) ≤ 3∆(G) for any normal graph. Bu
et al. [6] proved Conjecture 2 for planar graphs of girth at least 6.Wang et al. [18,19] confirmed Conjecture 2 for sparse graphs
andK4-minor free graphs.More precisely, in [18], the authors showed that, ifG is a normal graph,mad(G) < 5

2 , then ndi(G) ≤

∆(G) + 1 and ndi(G) = ∆(G) + 1 if and only if G has two adjacent ∆(G)-vertices.
Recently, Flandrin et al. [9] studied the neighbor sum distinguishing colorings for cycles, trees, complete graphs, and

complete bipartite graphs. Based on these examples, they proposed the following conjecture.

Conjecture 3 ([9]). If G is a connected graph on at least three vertices and G ≠ C5, then ∆(G) ≤ ndi(G) ≤ ∆(G) + 2.

Flandrin et al. [9] gave an upper bound for each connected graph Gwith maximum degree ∆ ≥ 2.

Theorem 1.1 ([9]). For each connected graph with maximum degree ∆ ≥ 2, we have ndi(G) ≤ ⌈
7∆−4

2 ⌉.

Wang and Yan [20] improved this bound to ⌈
10∆(G)+2

3 ⌉. Recently, Przybyło [16] proved that nsdi(G) ≤ 2∆(G)+col(G)−1,
where col(G) is the coloring number ofG, which is defined as the least integer k such thatG has a vertex enumeration inwhich
each vertex is preceded by fewer than k of its neighbors; hence col(G) − 1 ≤ ∆(G), and thus 2∆(G) + col(G) − 1 ≤ 3∆(G).
Dong et al. [7] considered the neighbor sum distinguishing colorings of planar graphs and showed the following result.

Theorem 1.2 ([7]). If G is a normal planar graph, then ndi(G) ≤ max{2∆(G) + 1, 25}.

Later, Wang et al. [17] improved this bound to max{∆(G) + 10, 25}. In this paper, we will prove the following results.

Theorem 1.3. Let G be a normal graph. If mad(G) ≤
5
2 , then ndi(G) ≤ k, where k = max{∆(G) + 1, 6}.

Corollary 1.1. Let G be a normal graph. If mad(G) ≤
5
2 , ∆(G) ≥ 5, then ndi(G) ≤ ∆(G) + 1.

It is well known that, if G is a planar graph with girth g , then mad(G) <
2g
g−2 , so the following corollary is obvious.

Corollary 1.2. Let G be a normal planar graph. If g(G) ≥ 10 and ∆(G) ≥ 5, then ndi(G) ≤ ∆(G) + 1.

Note that, if G contains two adjacent vertices of maximum degree, then ndi(G) ≥ ∆(G) + 1. So the bound ∆(G) + 1 in
Corollary 1.1 is sharp. Furthermore, Corollary 1.1 implies a result of Wang et al. [18] on the neighbor distinguishing coloring
of sparse graphs. For neighbor sum distinguishing total colorings, see [13–15].

2. Preliminaries

First, we give some lemmas.

Lemma 2.1 ([9]). If m = 0 (mod 3), then ndi(Cm) = 3; otherwise, ndi(Cm) = 4.

In the following lemmas, all the elements in each set are positive integers.

Lemma 2.2. Let S1, S2 be two sets, and let S3 = {a + b | a ∈ S1, b ∈ S2, a ≠ b}. If |S1| = k, k ≥ 3, |S2| = 2, then |S3| ≥ k.
Proof. Let S1 = {x1, . . . , xk}, x1 < · · · < xk, S2 = {m,M}, m < M . Clearly, the set ({x1 + m, . . . , xk + m} \ {2m}) ∪ {z},
where z = xk +M if xk ≠ M , z = xk−1 +M if xk−1 ≠ m and xk = M , and z = xk−2 +M if xk−1 = m and xk = M , has at least
k elements. �

Lemma 2.3. Let S1, S2 be two sets, and let S3 = {α + β | α ∈ S1, β ∈ S2, α ≠ β}. If |S1| = |S2| = 2 and S1 ≠ S2, then
|S3| ≥ 3.
Proof. Since S1 ≠ S2, we have |S1 ∩ S2| ≤ 1. If |S1 ∩ S2| = 1, then we assume that S1 = {x1, x2} and S2 = {x1, y}. Clearly,
{x1 + y, x1 + x2, x2 + y} ⊆ S3. Hence |S3| ≥ 3. Otherwise, |S1 ∩ S2| = 0. Without loss of generality, let S1 = {x1, x2},
S2 = {y1, y2} such that x1 < x2, y1 < y2. Then {x1 + y1, x1 + y2, x2 + y2} ⊆ S3. So we have |S3| ≥ 3. �

The following lemma is obvious, so we omit the proof.

Lemma 2.4. Let S be a set of size k + 1. Let S1 = {
k

i=1 xi | xi ∈ S, xi ≠ xj, if i ≠ j, 1 ≤ i, j ≤ k}. Then |S1| ≥ k + 1.
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