List coloring in the absence of two subgraphs ${ }^{*}$

Petr A. Golovach ${ }^{\text {a }}$, Daniël Paulusma ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Informatics, University of Bergen, Norway
${ }^{\mathrm{b}}$ School of Engineering and Computing Sciences, Durham University, United Kingdom

ARTICLE INFO

Article history:

Received 8 June 2013
Received in revised form 27 September 2013
Accepted 6 October 2013
Available online 1 November 2013

Keywords:

List coloring
Forbidden induced subgraph
Computational complexity

Abstract

A list assignment of a graph $G=(V, E)$ is a function \mathcal{L} that assigns a list $L(u)$ of so-called admissible colors to each $u \in V$. The List Coloring problem is that of testing whether a given graph $G=(V, E)$ has a coloring c that respects a given list assignment \mathcal{L}, i.e., whether G has a mapping $c: V \rightarrow\{1,2, \ldots\}$ such that (i) $c(u) \neq c(v)$ whenever $u v \in E$ and (ii) $c(u) \in L(u)$ for all $u \in V$. If a graph G has no induced subgraph isomorphic to some graph of a pair $\left\{H_{1}, H_{2}\right\}$, then G is called $\left(H_{1}, H_{2}\right)$-free. We completely characterize the complexity of LIST Coloring for (H_{1}, H_{2})-free graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Graph coloring involves the labeling of the vertices of some given graph by integers called colors such that no two adjacent vertices receive the same color. The goal is to minimize the number of colors. Graph coloring is one of the most fundamental concepts in both structural and algorithmic graph theory, and it arises in a vast number of theoretical and practical applications. Many variants are known, and, due to its hardness, the graph coloring problem has been well studied for special graph classes such as those defined by one or more forbidden induced subgraphs. We consider a more general version of graph coloring called list coloring, and classify the complexity of this problem for graphs characterized by two forbidden induced subgraphs. Kratsch and Schweitzer [27] and Lozin [28] performed a similar study as ours for the problems graph isomorphism and dominating set, respectively. Before we summarize related coloring results and explain our new results, we first state the necessary terminology. For a more general overview of the area, we refer to the surveys of Randerath and Schiermeyer [34] and Tuza [37], and to the book by Jensen and Toft [23].

1.1. Terminology

We only consider finite undirected graphs with no multiple edges and self-loops. A coloring of a graph $G=(V, E)$ is a mapping $c: V \rightarrow\{1,2, \ldots\}$ such that $c(u) \neq c(v)$ whenever $u v \in E$. We call $c(u)$ the color of u. A k-coloring of G is a coloring c of G with $1 \leq c(u) \leq k$ for all $u \in V$. The Coloring problem is that of testing whether a given graph admits a k-coloring for some given integer k. If k is fixed, i.e., not part of the input, then we denote the problem as k-Coloring. A list assignment of a graph $G=(V, E)$ is a function \mathcal{L} that assigns a list $L(u)$ of so-called admissible colors to each $u \in V$. If $L(u) \subseteq\{1, \ldots, k\}$ for each $u \in V$, then \mathcal{L} is also called a k-list assignment. We say that a coloring $c: V \rightarrow\{1,2, \ldots\}$ respects \mathcal{L} if $c(u) \in L(u)$ for all $u \in V$. The List Coloring problem is that of testing whether a given graph has a coloring that

[^0]respects some given list assignment. For a fixed integer k, the List k-Coloring problem has as input a graph G with a k-list assignment \mathcal{L}, and asks whether G has a coloring that respects \mathcal{L}. The size of a list assignment \mathcal{L} is the maximum list size $|L(u)|$ over all vertices $u \in V$. For a fixed integer ℓ, the ℓ-LIST Coloring problem has as input a graph G with a list assignment \mathcal{L} of size at most ℓ, and asks whether G has a coloring that respects \mathcal{L}. Note that k-Coloring can be viewed as a special case of List k-Coloring by choosing $L(u)=\{1, \ldots, k\}$ for all vertices u of the input graph, whereas List k-Coloring is readily seen to be a special case of k-List Coloring.

For a subset $S \subseteq V(G)$, we let $G[S]$ denote the induced subgraph of G, i.e., the graph with vertex set S and edge set $\{u v \in E(G) \mid u, v \in S\}$. For a graph F, we write $F \subseteq_{i} G$ to denote that F is an induced subgraph of G. Let G be a graph, and let $\left\{H_{1}, \ldots, H_{p}\right\}$ be a set of graphs. We say that G is $\left(H_{1}, \ldots, H_{p}\right)$-free if G has no induced subgraph isomorphic to a graph in $\left\{H_{1}, \ldots, H_{p}\right\}$; if $p=1$, we may write H_{1}-free instead of $\left(H_{1}\right)$-free. The complement of a graph $G=(V, E)$ denoted by \bar{G} has vertex set V and an edge between two distinct vertices if and only if these vertices are not adjacent in G. The union of two graphs G and H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Note that G and H may share some vertices. If $V(G) \cap V(H)=\emptyset$, then we speak of the disjoint union of G and H, denoted by $G+H$. We denote the disjoint union of r copies of G by $r G$. The graphs C_{r}, P_{r}, and K_{r} denote the cycle, path, and complete graph on r vertices, respectively. The graph $K_{r, s}$ denotes the complete bipartite graph with partition classes of size r and s, respectively. The graph $K_{r}-e$ denotes the graph obtained from a complete graph K_{r} after removing one edge. The line graph of a graph G with edges e_{1}, \ldots, e_{p} is the graph with vertices u_{1}, \ldots, u_{p} such that there is an edge between any two vertices u_{i} and u_{j} if and only if e_{i} and e_{j} share an end-vertex in G.

1.2. Related work

Král' et al. [25] completely determined the computational complexity of Coloring for graph classes characterized by one forbidden induced subgraph. By combining a number of known results, Golovach, Paulusma, and Song [15] obtained similar dichotomy results for the problems List Coloring and k-List Coloring, whereas the complexity classifications of the problems List k-Coloring and k-Coloring are still open (for a survey, we refer to the paper of Golovach, Paulusma, and Song [16], and for some new results to a recent paper of Huang [20]). The following theorem gives these three complexity dichotomies.

Theorem 1. Let H be a fixed graph. Then the following three statements hold.
(i) Coloring is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_{4} or of $P_{1}+P_{3}$; otherwise, it is $N P$-complete for H-free graphs.
(ii) List Coloring is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_{3}; otherwise, it is NP-complete for H-free graphs.
(iii) For all $\ell \leq 2$, ℓ-List Coloring is polynomial-time solvable. For all $\ell \geq 3, \ell$-List Coloring is polynomial-time solvable for H-free graphs if H is an induced subgraph of P_{3}; otherwise, it is NP-complete for H-free graphs.

When we forbid two induced subgraphs, the situation becomes less clear for the Coloring problem, and only partial results are known. We summarize these results in the theorem given below. Here, we let C_{3}^{+}denote the graph with vertices a, b, c, d and edges $a b, a c, a d, b c$, whereas the graph $\overline{P_{1}+P_{4}}$ is also known as the gem. Also note that the graphs H_{1} and H_{2} may be swapped in each of the subcases of Theorem 2.

Theorem 2. Let H_{1} and H_{2} be two fixed graphs. Then the following hold.
(i) Coloring is NP-complete for $\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right)$-free graphs if

1. $H_{1} \supseteq_{i} C_{r}$ for some $r \geq 3$ and $H_{2} \supseteq_{i} C_{s}$ for some $s \geq 3$,
2. $H_{1} \supseteq_{i} K_{1,3}$ and $H_{2} \supseteq_{i} K_{1,3}$,
3. H_{1} and H_{2} contain a spanning subgraph of $2 P_{2}$ as an induced subgraph,
4. $H_{1} \supseteq_{i} C_{3}$ and $H_{2} \supseteq_{i} K_{1, r}$ for some $r \geq 5$,
5. $H_{1} \supseteq_{i} C_{r}$ for $r \geq 4$ and $H_{2} \supseteq_{i} K_{1,3}$,
6. $H_{1} \supseteq_{i} C_{3}$ and $H_{2} \supseteq_{i} P_{164}$,
7. $H_{1} \supseteq_{i} C_{r}$ for $r \geq 5$ and H_{2} contains a spanning subgraph of $2 P_{2}$ as an induced subgraph,
8. $H_{1} \supseteq_{i} C_{r}+P_{1}$ for $3 \leq r \leq 4$ or $H_{1} \supseteq_{i} \overline{C_{r}}$ for $r \geq 6$, and H_{2} contains a spanning subgraph of $2 P_{2}$ as an induced subgraph,
9. $H_{1} \supseteq_{i} K_{4}$ or $H_{1} \supseteq_{i} K_{4}-e$, and $H_{2} \supseteq_{i} K_{1,3}$.
(ii) Coloring is polynomial-time solvable for $\left(H_{1}, H_{2}\right)$-free graphs if
10. H_{1} or H_{2} is an induced subgraph of $P_{1}+P_{3}$ or of P_{4},
11. $H_{1} \subseteq_{i} C_{3}+P_{1}$ or $H_{1} \subseteq_{i} 2 P_{2}$, and $H_{2} \subseteq_{i} K_{1,3}$,
12. $H_{1} \subseteq_{i} C_{3}^{+}$and $H_{2} \neq K_{1,5}$ is a forest on at most six vertices,
13. $H_{1} \subseteq_{i} C_{3}^{+}$, and $H_{2} \subseteq_{i} s P_{2}$ or $H_{2} \subseteq_{i} s P_{1}+P_{5}$ for $s \geq 1$,
14. $H_{1}=K_{r}$ for $r \geq 4$, and $H_{2} \subseteq_{i} s P_{2}$ or $H_{2} \subseteq_{i} s P_{1}+P_{5}$ for $s \geq 1$,
15. $H_{1} \subseteq_{i} P_{1}+P_{4}$ or $H_{1} \subseteq_{i} P_{5}$, and $H_{2} \subseteq_{i} \overline{P_{1}+P_{4}}$,
16. $H_{1} \subseteq_{i} P_{1}+P_{4}$ or $H_{1} \subseteq_{i} 2 P_{2}$, and $H_{2} \subseteq_{i} \overline{P_{5}}$,
17. $H_{1} \subseteq_{i} K_{r}-e$ for $r \geq 2$, and $H_{2} \subseteq_{i} s P_{1}+P_{2}$ for $s \geq 0$ or $H_{2} \subseteq_{i} 2 P_{2}$.

https://daneshyari.com/en/article/6872313

Download Persian Version:
https://daneshyari.com/article/6872313

Daneshyari.com

[^0]: This paper was supported by EPSRC (EP/G043434/1) and ERC (267959), and an extended abstract of it appeared in the Proceedings of CIAC 2013.

 * Corresponding author. Tel.: +44019133 41723; fax: +4401913341701.

 E-mail addresses: petr.golovach@ii.uib.no (P.A. Golovach), daniel.paulusma@durham.ac.uk (D. Paulusma).

