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1. Introduction

Let G = (V, E) be a simple undirected graph. A set X C V(G) is called an i-packing of G if vertices of X have pairwise
distance greater thani. Let ay, . . ., ai be positive integers. An (ay, . . ., a;)-packing coloring of a graph G is a mapping f from
V(G)to{1, 2, ..., k}suchthat vertices with colori have pairwise distance greater than g;. For brevity, we will call this just an
(ay, ..., ag)-coloring. For example, if all the g; are 1, this represents a normal k-coloring, and if all the a; are r, this represents
a normal k-coloring of the rth power of G. Further, if S = (ay, az, ...) is a sequence of positive integers, we define the
S-packing chromatic number xs(G) of G as the smallest integer k such that G has an (ay, . .., ai)-coloring. If no such coloring
of G exists for any positive integer k, then we say xs(G) = oo.

The concept of S-packing chromatic number was mentioned in [8] and formally introduced and studied in [9]. There
the focus was on the S-packing chromatic number of the infinite path P, and the computational complexity of (a;, a;, as)-
colorability. A special case of this, called the packing chromatic number and written x,(G), is the case whenS = (1, 2, 3, ...).
There have been several papers on the packing chromatic number, especially on the values for lattices and other infinite
graphs [1-3,6-8,12-14], as well as on the computational complexity of the parameter [5,8].

In this paper, we consider xs(G) of several lattices. The Cartesian product of graphs G and H, written GOH, is the graph
with vertex set V(G) x V(H) where (u, v) and (1, v") are adjacent if and only if (1) u = v" and vv’ € E(H),or (2) v = v’
and uu’ € E(G). The two-way infinite path, written P, is the graph with the integer set Z as the vertex set, such that two
vertices are adjacent if and only if they correspond to consecutive integers. The infinite square lattice, written Z?, is Pso OPso.
This graph has been the subject of several papers. The original [8] showed that9 < x,(Z?) < 23; the lower bound was later
improved to 10 by Fiala et al. [6] and then to 12 by Ekstein et al. [2], while the upper bound was improved by Holub and
Soukal [13] to 17.

The infinite triangular lattice, denoted by 77, is the graph obtained from Z? by adding all edges of the form {(i, j), (i+1,j—
1)}. The infinite hexagonal lattice, denoted by #, is the 3-regular infinite plane graph where every face is a hexagon. Fiala
et al. [6] showed that x,(#) = 7, while Finbow and Rall [7] showed that x,(7") = oo.
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(@) F,. (b) Gs.
Fig. 1. Subgraphs containing only one vertex of a 7- or 9-packing in # (shown in dual).

In this paper, we investigate xs(G) of the infinite one-row, square, two-row, triangular, and hexagonal lattices. We
determine the cases where xs is small for these graphs. We also investigate the parameter for some special sequences,
and give some exact values and asymptotic bounds.

2. Some tools
2.1. Definitions

Throughout the paper, every sequence S is a nondecreasing sequence of positive integers, and a; denotes the ith term of
S. We define a sequence (ay, . . ., ax) as a minimal packing chromatic sequence (MPCS) for a graph G if G has an (aq, ..., ai)-
coloring but does not have such a coloring if any of the g; are increased. Note that an MPCS might not exist: for example, a
star has a (1, ay)-coloring for all a,. But MPCS exist for the lattices we consider.

A natural way to construct suitable colorings is to take an existing good coloring and partition one of the classes into
several classes. We call such a process splitting.

2.2. Density

We will use X; to denote an i-packing in the graph. Upper bounds on the size of X; are useful in establishing lower bounds
on xs(G). Density was formally introduced by Fiala et al. [6].

Definition 1 (/6]). Let G be a graph with finite maximum degree. Then the density of a set of vertices X C V(G) is

IX NN, [v]]
IN:[v]]

r—>oo VEV

Dg(X) = limsup max:

where N, [v] is the set of vertices within distance r of v.

Lemma 1 ([6]). Ifan (a1, ay, . . ., ay)-coloring of G has classes X;,, X, , - . . , Xq,, then

k
> DelXe) = 1.
i=1

Lemma 2 ([6]). In the infinite square lattice Z?,
(@) D2 (X) is at most 2/(k + 1)2 if kis odd, and at most 2/ (k* + 2k + 2) if k is even;
(b) D2 (X UXy) < 2.

We will also need the bounds for the hexagonal lattice. The following lemma uses some ideas from [10].

Lemma 3. In the infinite hexagonal lattice J¢,
(@) Dy (Xp) < 1/6m?if k = 4m — 1;
(b) Dy (Xp) < 1/(6m? + 6m + 2) if k = 4m + 1; and
(c) Dy (X)) <2/(3m? 4+ 3m 4+ 2) if k =2m.
Proof. (a) We decompose # into isomorphic subgraphs F;,; whose vertices are distance at most 4m — 1 apart in #. When
m = 1, let F,; be a 6-cycle. When m > 1, let F, include all the vertices within distance 2m — 2 of a 6-cycle (including the
6-cycle itself). It is easy to see that F,, has order 6m? and diameter 2(2m — 2) + 3 = 4m — 1, and so contains at most one
vertex of a (4m — 1)-packing. The case of F, is illustrated in Fig. 1(a), where we use the dual graph 7 to represent .

(b) We again decompose # into isomorphic subgraphs. When m = 0, let Gy be a pair of adjacent vertices in #. When
m > 0, let G, include all the vertices within distance 2m of a pair of adjacent vertices (including the pair itself). The subgraph
has order 2((2m + 1)? — 2(m + 1)m/2) = 6m? + 6m + 2 and diameter 4m + 1, and so contains at most one vertex of a
(4m + 1)-packing. The case of G; is illustrated in Fig. 1(b).
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