Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Minimum degree, independence number and pseudo [2, *b*]-factors in graphs

Siham Bekkai*

USTHB, Faculty of Mathematics, PO Box 32 El-Alia Bab Ezzouar, 16111 Algiers, Algeria

ARTICLE INFO

Article history: Received 13 April 2012 Received in revised form 18 August 2013 Accepted 24 September 2013 Available online 11 October 2013

Keywords: Pseudo [2, *b*]-factor Independence number Minimum degree

1. Introduction

Throughout this paper, graphs are assumed to be finite and simple. For unexplained concepts and notations, the reader could refer to [1].

Given a graph *G*, we let *V*(*G*) be its vertex set, *E*(*G*) its edge set and *n* its order. The neighborhood of a vertex *x* in *G* is denoted by $N_G(x)$ and defined to be the set of vertices of *G* adjacent to *x*; the cardinality of this set is called the degree of *x* in *G*. For convenience, we denote by d(x) the degree of a vertex *x* in *G*, by δ the minimum degree of *G* and by α its independence number. However, if *H* is a subgraph of *G* then we write $d_H(x)$, δ_H , and $\alpha(H)$ for the degree of *x* in *H*, the minimum degree, and the independence number of *H* respectively. We denote by $d_G(x, y)$ the distance between *x* and *y* in the graph *G*.

A factor of *G* is a spanning subgraph of *G*, that is a subgraph obtained by edge deletions only. If *S* is the set of deleted edges, then this subgraph is denoted G - S. If *H* is a subgraph of *G*, then G - H stands for the subgraph induced by V(G) - V(H) in *G*. By starting with a disjoint union of two graphs G_1 and G_2 and adding edges joining every vertex of G_1 to every vertex of G_2 , we obtain the join of G_1 and G_2 , denoted $G_1 + G_2$. For a positive integer *p*, the graph *pG* consists of *p* vertex-disjoint copies of *G*. In all that follows, we use disjoint to stand for vertex-disjoint.

In [2], we defined a pseudo 2-factor of a graph *G* to be a factor each component of which is a cycle, an edge or a vertex. It can also be seen as a graph partition by a family of vertices, edges and cycles. Graph partition problems have been studied in lots of papers. They consist of partitioning the vertex set of *G* by disjoint subgraphs chosen to have some specific properties. In [3], Enomoto listed a variety of results dealing with partitions into paths and cycles. The emphasis is generally on the existence of a given partition. In our study of pseudo-factors, however, we take interest in the number of components that are edges or vertices in a pseudo-factor of *G*. In [2], we proved that every graph with minimum degree $\delta \ge 1$ and independence number $\alpha \ge \delta$ possesses a pseudo 2-factor with at most $\alpha - \delta + 1$ edges or vertices and that this bound is best possible. Motivated by the desire to know what happens in general cases, we define a *pseudo* [*a*, *b*]-*factor* (where *a* and *b* are two integers such that $b \ge a \ge 2$) as a factor of *G* in which each component *C* on at least three vertices verifies

* Fax: +213 21 24 79 07. E-mail addresses: siham.bekkai@gmail.com, sbekkai@usthb.dz.

ABSTRACT

A pseudo [2, *b*]-factor of a graph *G* is a spanning subgraph in which each component *C* on at least three vertices verifies $2 \le d_C(x) \le b$, for every vertex *x* in *C*. Given an integer $b \ge 4$, we show that a graph *G* with minimum degree δ , independence number $\alpha > \frac{b(\delta-1)}{2}$ and without isolated vertices possesses a pseudo [2, *b*]-factor with at most $\alpha - \lfloor \frac{b}{2}(\delta - 1) \rfloor$ components that are edges or vertices. This bound is sharp.

© 2013 Elsevier B.V. All rights reserved.

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.09.005

 $a \le d_C(x) \le b$, for every $x \in C$. Clearly, a pseudo [a, b]-factor with no component that is an edge or a vertex is nothing but an [a, b]-factor. Surveys on factors and specifically [a, b]-factors and connected factors can be found in [4,5]. In the present work, we study pseudo [2, b]-factors, we consider the case $b \ge 4$ and obtain an upper bound (in function of δ , α and b) for the number of components that are edges or vertices in a pseudo [2, b]-factor of G which minimizes the number of such components. Note that, from a result by Kouider and Lonc [6], we deduce that if $\alpha \le \frac{b(\delta-1)}{2}$ then G has a [2, b]-factor. Laying down the condition $\alpha > \frac{b(\delta-1)}{2}$, the main result of this paper reads as follows:

Theorem 1. Let *b* be an integer such that $b \ge 4$ and *G* a graph of minimum degree $\delta \ge 1$ and independence number α with $\alpha > \frac{b(\delta-1)}{2}$. Then *G* possesses a pseudo [2, b]-factor with at most $\alpha - \left|\frac{b}{2}(\delta-1)\right|$ components that are edges or vertices.

The bound given in Theorem 1 is best possible. Indeed, let *b* be an integer such that $b \ge 4$ and let *H* be a graph with nonempty set of vertices and empty set of edges. The graph $G = H + pK_2$, where $p > \frac{b}{2}|H|$, has minimum degree $\delta = |H| + 1$ and independence number $\alpha = p$. We can easily verify that *G* possesses a pseudo [2, *b*]-factor with $\alpha - \lfloor \frac{b}{2}(\delta - 1) \rfloor$ edges and we cannot do better. Also, a simple example reaching the bound of Theorem 1, is a graph *G* obtained by taking a graph *H* on *n* vertices in which every vertex is of degree between 2 and *b* ($b \ge 4$), then taking *n* additional independent vertices and joining exactly one isolated vertex to exactly one vertex of *H*. The graph *G* has minimum degree $\delta = 1$, independence number $\alpha = n$ and can be partitioned into one component that is *H* and $n = \alpha - \lfloor \frac{b}{2}(\delta - 1) \rfloor$ vertices (or simply *n* edges) and we cannot do better.

Combining Theorem 1 with the results of [2] and [6], we obtain

Corollary 1. Let $b \ge 2$ be an integer such that $b \ne 3$. Let *G* be a graph of minimum degree δ and independence number α and without isolated vertices. Then *G* possesses a pseudo [2, b]-factor with at most $\max(0, \alpha - \lfloor \frac{b}{2}(\delta - 1) \rfloor)$ edges or vertices.

2. Independence number, minimum degree and pseudo [2, b]-factors

First of all, we put aside the case $\delta = 1$ for which we know that we have in *G* a pseudo [2, *b*]-factor with at most α edges or vertices. Indeed, if we regard a cycle as a component each vertex of which is of degree between 2 and *b*, then we know that any graph *G* can be covered by at most α cycles, edges or vertices (see for instance [7]). So the bound $\alpha - \lfloor \frac{b}{2}(\delta - 1) \rfloor$ holds for $\delta = 1$.

From now on, we assume that *G* has minimum degree $\delta \ge 2$. Let *F* be a subgraph of *G* such that $2 \le d_F(x) \le b$ for all $x \in V(F)$. For the sake of simplifying the writing, such a subgraph *F* will be called a [2, *b*]-subgraph of *G*. Denote by *D* a smallest component of G - F, set $W = G - (D \cup F)$ and choose *F* in such a manner that:

(a) $\alpha(G - F)$ is as small as possible;

(b) subject to (a), the number of vertices of *D* is as small as possible;

(c) subject to (a) and (b), the number of vertices in F is as small as possible.

Notice that a subgraph *F* satisfying the conditions above exists since *G* contains a cycle (as $\delta \ge 2$). We shall show the following theorem which yields Theorem 1:

Theorem 2. Let *b* be an integer such that $b \ge 4$. Let *G* be a graph of minimum degree $\delta \ge 2$ and independence number α such that $\alpha > \frac{b(\delta-1)}{2}$. Then there exists a pseudo [2, b]-factor of *G* and a [2, b]-subgraph *F* of this pseudo [2, b]-factor such that $\alpha(G-F) \le \alpha - \left|\frac{b}{2}(\delta-1)\right|$.

Proof of Theorem 2. Let *F* be a [2, *b*]-subgraph of *G* satisfying the conditions (a), (b) and (c). Denote by u_1, \ldots, u_m ($m \ge 1$) the neighbors of *D* on *F* and by P_{ij} a path with internal vertices in *D* joining two vertices u_i and u_j with $1 \le i, j \le m$ and $i \ne j$. The proof of Theorem 2 will be divided into several claims. The following one, which will intensively be used, reminds Lemma 1 in [2].

Claim 1. Let F' be a [2, b]-subgraph of G which contains the neighbors of D in F and at least one vertex of D. Setting $W' = G - (F' \cup D)$, we have $\alpha(W') > \alpha(W)$.

Proof of Claim 1. Set D' = D - F'.

(1) If $D' = \emptyset$, then by the choice of *F*, we have $\alpha(G - F) \le \alpha(G - F')$. But $\alpha(G - F) = \alpha(W) + \alpha(D) \ge \alpha(W) + 1$ and $\alpha(G - F') = \alpha(W')$, so $\alpha(W) < \alpha(W')$.

(2) If $D' \neq \emptyset$, then F' gives a component D' smaller than D, so again by the choice of F, we have $\alpha(W) + \alpha(D) = \alpha(G - F) < \alpha(G - F') = \alpha(W') + \alpha(D')$. But as $\alpha(D') \le \alpha(D)$, we obtain $\alpha(W) < \alpha(W')$. \Box

In the next claims, we try to learn more about the degrees in F of its vertices.

Claim 2. For every $i, 1 \leq i \leq m$, we have $N_F(u_i) \cap \{u_1, \ldots, u_m\} = \emptyset$.

Proof of Claim 2. Suppose that for some i, $N_F(u_i) \cap \{u_1, \ldots, u_m\} \neq \emptyset$, then there exists a vertex u_j $(1 \le j \le m$ and $j \ne i)$ such that $u_i u_j \in E(F)$. Put $e = u_i u_j$, then $(F - e) \cup P_{ij}$ is a [2, *b*]-subgraph. Indeed, none of the vertices of *F* changes its degree in $(F - e) \cup P_{ij}$ and the internal vertices of P_{ij} are of degree 2. So taking $F' = (F - e) \cup P_{ij}$ in Claim 1 we obtain $\alpha(W) > \alpha(W)$, which is absurd. \Box

Download English Version:

https://daneshyari.com/en/article/6872444

Download Persian Version:

https://daneshyari.com/article/6872444

Daneshyari.com