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a b s t r a c t

We show that each randomized o(|G|2)-query algorithm can recover only an expected o(1)
fraction of the Cayley table of some finite Abelian loop (G, ·), where both multiplication
and inversion queries are allowed. Furthermore, each randomized o(|R|2)-query algorithm
can recover only an expected o(1) fraction of any of the Cayley tables of some finite
commutative semiring (R,+, ·), with (R,+)being a commutative aperiodicmonoid,where
each query may ask for x+ y or x · y for any x, y ∈ R.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Zumbrägel et al. [15] consider the problem of learning the Cayley table (i.e., multiplication table) of a groupoid (G, ·) by
making theminimumnumber of queries, each for a product a·b, with a, b ∈ G. They give a deterministic |G|-query algorithm
for the exact recovery of the Cayley table of any finite Abelian group (G, ·). The bound of |G| is optimal up to an additive
factor of |G|/ ln |G| − 1/2 + lg |G| [15, Corollary 9]. Note that |G|2 rather than O(|G|) queries are needed to exhaust the
Cayley table. When (G, ·) is taken uniformly at random from a set X of groupoids with groundset G, the expected number
of queries for any algorithm to exactly recover the Cayley table of (G, ·) is at least log|G| |X| [15, Lemma 6]. Zumbrägel et al.
[15, Proposition 16] also give a deterministic (|R| + (lg |R|)2)-query algorithm for recovering the two Cayley tables of any
finite ring (R,+, ·), where each query may ask for x+ y or x · y on any choice of x, y ∈ R.

Given the results of Zumbrägel et al. [15], we are motivated by whether all the axioms of finite Abelian groups are
necessary for recovering the Cayley table with only o(|G|2) queries. First of all, commutativity is not necessary, because
existing results can be easily modified to give a deterministic O(|G| log |G|)-query algorithm for the exact recovery of any
finite group (G, ·). See, e.g., [9]. The present paper shows that all the other axioms of finite Abelian groups are necessary for
recovering the Cayley table with o(|G|2) queries even if only a small constant (in expectation) fraction of the entries need to
be recovered. In particular,we show that any randomized o(|G|2)-query algorithmcan recover only an expected o(1) fraction
of the Cayley table of some finite Abelian loop even if the algorithm is furthermore allowed to query for the inverse of any
element (note that each Abelian loop does have a unique inverse for any of its elements). Our proof composes Abelian groups
in amanner belonging to a general class of crossed products [14, Eq. (2)]. Furthermore,we show that any randomized o(|R|2)-
query algorithm can recover only an expected o(1) fraction of any of the Cayley tables of some finite commutative semiring
(R,+, ·), with (R,+) being a commutative aperiodic monoid. As a corollary, any randomized o(|G|2)-query algorithm can
recover only an expected o(1) fraction of the Cayley table of some finite commutative aperiodicmonoid. It iswell known that
Abelian loops and commutative monoids satisfy all the axioms of groups except for associativity and existence of inverses,
respectively; so all the axioms of groups are essential for o(|G|2)-query recovery of any constant fraction of a Cayley table.
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There are related works concerning quasigroups. A Latin square of order n refers to the Cayley table of a quasigroup of
size n. A partially filled n-by-n table that can be uniquely completed to a Latin square is called a critical set if deleting any
of its entries prevents unique completion to a Latin square [4,13]. Ghandehari et al. [10, Theorem 4] prove the existence of
a Latin square of order nwhose smallest critical sets have size at least n2

− (e+ o(1))n5/3. Therefore, recovering exactly the
Cayley table of a quasigroup of size n requires n2

− (e + o(1))n5/3 queries in the worst case. Furthermore, the minimum
size of critical sets in any Latin square of order n is at least n⌊(log1/3 n)/2⌋ [3]. There exists a Latin square of order n having
a critical set of size s if ⌊n2/4⌋ ≤ s ≤ (n2

− n)/2 [5,1] or, for n = 2m, 4m−1
≤ s ≤ 4m

− 3m [6]. No critical sets in any Latin
square of order n ≥ 7 can have size greater than n2

− ⌊(7n−
√
n− 20)/2⌋ [2,11].

The paper is organized as follows. Section 2 defines the basic terms. Section 3 shows that any randomized o(|G|2)-query
algorithm can recover only an expected o(1) fraction of the Cayley table of some finite Abelian loop. Section 4 proves that any
randomized o(|R|2)-query algorithm can recover only an expected o(1) fraction of the Cayley tables of some commutative
semiring whose addition induces a commutative aperiodic monoid. The Appendix proves that any finite group can be
recovered with O(|G| log |G|) multiplication queries, a result that is not hard to see from the existing literature.

2. Preliminaries

We begin with some basic definitions in algebra [7].

Definition 1. A groupoid (G, ·) is a nonempty set G endowed with a binary operation ·:G × G → G. An element e ∈ G is
called an identity if a · e = e · a = a for all a ∈ G.

As a well-known fact, an identity of a groupoid is necessarily unique if it exists.

Definition 2. For a groupoid (G, ·) with identity e and a, b ∈ G, we say that a is an inverse of b if a · b = b · a = e. An inverse
of b, if it is unique, is denoted b−1.

Definition 3. A groupoid (G, ·) is

• Abelian (or commutative) if a · b = b · a for all a, b ∈ G,
• associative if a · (b · c) = (a · b) · c for all a, b, c ∈ G,
• a monoid if it is associative and has an identity,
• a quasigroup if, for all a, b ∈ G, there exist unique elements x, y ∈ G satisfying a · x = b and y · a = b,
• a loop if it is a quasigroup with an identity, and
• a group if it is associative, has an identity, and each element of G has a unique inverse.

Clearly, each element of an Abelian loop has a unique inverse.

Definition 4. A monoid (G, ·) is aperiodic if, for each a ∈ G, there exists a positive integer nwith an = an+1.

Definition 5. A ringoid (R,+, ·) is a nonempty set R endowed with two binary operations +, ·: R × R → R such that
a · (b+ c) = (a · b)+ (a · c) and (a+ b) · c = (a · c)+ (b · c) for all a, b, c ∈ R.

Definition 6. A ringoid (R,+, ·) is a commutative semiring if (R,+) and (R, ·) are commutative monoids such that, denoting
the identity of (R,+) by 0, 0 · a = a · 0 = 0 for all a ∈ R.

Let Z+ ≡ {1, 2, . . .} be the set of positive integers. For n ∈ Z+, define [n] ≡ {1, 2, . . . , n}. An algorithm with oracle
access to a groupoid (G, ·) is given the set G and may query for a · b for any a, b ∈ G; such a query is called a multiplication
query. Depending on the contexts, it may also make an inversion query, which returns a−1 given any a ∈ G. An algorithm
with oracle access to a ringoid (R,+, ·) is given oracle access to (R,+) and (R, ·). We tacitly assume a reasonable encoding
of the elements of the groundsets G and R, e.g., G = [|G|] and R = [|R|], with integers encoded in binary.

The following theorem is not hard to see from the existing literature (see, e.g., [9]). For completeness, we prove it in the
Appendix.

Theorem 7. The Cayley table of any finite group (G, ·) can be computed with O(|G| log |G|) multiplication queries.

Below is a well-known fact regarding crossed products of loops [14, Eq. (2)].

Fact 8 ([14]). Let (H, ·H) and (K , ·K ) be loops with identities eH and eK , respectively, and let A be a function from H×H×K ×K
to K . Assume the following properties for all h, h′ ∈ H and k, k′ ∈ K.

(i) There exist unique x, y ∈ K satisfying A(h, h′, k, x) = k′ and A(h′, h, y, k) = k′.
(ii) A(h, eH , k, eK ) = A(eH , h, eK , k) = k.

For (h, k), (h′, k′) ∈ H × K , denote (h, k) ▹ (h′, k′) = (h ·H h′, A(h, h′, k, k′)). Then (H × K , ▹) is a loop with identity (eH , eK ).
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