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a b s t r a c t

Given a class of graphs F , a forbidden subgraph characterization (FSC) is a set of graphs H
such that a graph G belongs to F if and only if no graph of H is isomorphic to an induced
subgraph of G. FSCs play a key role in graph theory, and are at the center ofmany important
results obtained in that field. In this paper, we present novel methods that automate the
generation of conjectures on FSCs. Sincemost classes of graphs do not have such character-
ization, we also describe methods to find less restrictive results in the form of necessary or
sufficient conditions to characterize a class of graphs with forbidden subgraphs. Further-
more, while these methods require to explore a possibly infinite search space, we present
an enumerative technique that guarantees the discovery of characterizations involving for-
bidden subgraphs with a limited number of vertices. Another technique, which enables the
discovery of characterizations with much larger subgraphs through the use of a heuristic
search, is also described. In our experiments, we use these methods to find new theorems
on the characterization of well-known graph classes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, the process of discovering new knowledge in graph theory was carried out by mathematicians, with little
assistance from computers. In recent years, mathematicians in that field have turned to computers to find some very im-
portant results. A famous illustration of this is the proof of the four color conjecture, which was done in large part using
computers [2,22]. Since then, computers have played an increasing role in the discovery of new knowledge in graph theory,
and many tools have been proposed for this task. One of the first computer programs for this purpose was Graffiti, devel-
oped by Fajtlowicz [8], which has generated over a thousand conjectures as algebraic equations involving graph invariants.
Another more recent and equally prolific tool to generate conjectures involving graph invariants is AutoGraphiX (AGX),
proposed by Caporossi and Hansen [5]. This last program, which applies the Variable Neighborhood Search metaheuris-
tic [20] to find extremal graphs, can also be used to find graphs satisfying various constraints, to find structural conjectures,
to refute conjectures and to suggest proofs.

Although automating the generation of conjectures has been the aim of many works, almost all of these focused on gen-
erating conjectures in the form of relations on graph invariants. Yet, as recently suggested by Hansen et al. in [16], there are
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many interesting results in graph theory that take a different form. One of them, known as forbidden subgraph characteri-
zation (FSC), describes a class of graphs in terms of the subgraphs that these graphs are not allowed to have. A well known
FSC, due to Chudnovsky et al. [6], characterizes perfect graphs as the graphs which do not have as induced subgraph any
odd cycle containing five or more vertices, or its complement. Another important FSC, due to Beineke [3], characterizes line
graphs using nine forbidden graphs, shown in Fig. 1.

In this paper, we present methods to automatically generate conjectures on FSCs. To our knowledge, these methods are
the first to be proposed for this specific problem. The rest of the paper is structured as follows. We first introduce some
preliminary concepts that will help to understand the rest of the paper. We then describe ourmethods, by considering three
problems: finding sufficient conditions of a characterization involving forbidden subgraphs, finding necessary conditions
also using forbidden subgraphs, and finding actual FSCs. We then show how these methods can be used in practice to gen-
erate conjectures, and illustrate this by reproducing some known results, as well as generating new ones. Finally, we end
this paper with a short summary of our work.

2. Preliminary concepts and definitions

Since this work focuses specifically on characterizations involving forbidden induced subgraphs, to lighten the presenta-
tion, we will from now on refer to induced subgraphs simply as subgraphs.

Let G be the set containing all finite graphs. A class of graphs F ⊆ G is a possibly infinite set of graphs that share a
common property. This common property could be defined using a predicate function pred : G → {true, false}, such that
∀G ∈ G, pred(G) = true ⇐⇒ G ∈ F . For instance, the class of perfect graphs could be expressed using the following
predicate:

pred(G) : if, ∀ subgraphs H of G, χ(H) = ω(H) then true, else false, (1)

where χ(H) is the smallest number of colors needed to color the vertices of H so that no two adjacent vertices share the
same color, i.e. the chromatic number of H , and ω(H) is the maximum order of a clique in H , i.e. its clique number.

Let H be a set of graphs, we say that a graph G is H-free if there is no graph of H isomorphic to one of its subgraphs, and
denote byGH the set of all such graphs. Using this terminology, an FSC ofF is a set of graphsH such thatGH = F . Aswewill
see, not every class of graphs has an FSC. For classes that do not have an FSC, we are often interested in finding someweaker
rules allowing us to partially characterize the graphs of these classes. These rules come in two forms: sufficient conditions
(SFSC) and necessary conditions (NFSC). Let F be the class of graphs to characterize and H be a set of forbidden subgraphs.
Sufficient conditions can be expressed as follows: if a graph G is H-free, then it is in F . Thus, a sufficient condition can be
stated as GH ⊆ F . However, sufficient conditions need not fully describe F . Indeed, if G is not H-free, we cannot use this
type of condition to determine if G is in F or not. On the other hand, necessary conditions can be expressed as follows: if a
graph G is in F then it is H-free or, equivalently, GH ⊇ F . Again, necessary conditions may offer only a partial description
of F : if G is not in F then it can either be H-free or not.

Let G be a graph, and W = {v1, v2, . . . , vq} be a subset of V (G). We denote by G[W ] or, when the context is clear, by
⟨v1, v2, . . . , vq⟩ the subgraph ofG induced byW . Furthermore, letH be another graph, wewriteG ≃ H whenG is isomorphic
toH , andH ⊆ GwhenH is isomorphic to a subgraph of G. The following elementary properties will be used later on to prove
more complex results.

Property 1. Let G1,G2,G3 be three graphs, and H1, H2 be two sets of forbidden subgraphs.

(a) If G1 ⊆ G2 and G2 ⊆ G3 then G1 ⊆ G3.
(b) If G1 ⊈ G2 and G3 ⊆ G2 then G1 ⊈ G3.
(c) If G1 ⊈ G2 and G1 ⊆ G3 then G3 ⊈ G2.
(d) If G1 ⊆ G2 then G{G1} ⊆ G{G2}.
(e) GH1∪H2 = GH1 ∩ GH2 .
(f) If H1 ⊆ H2 then GH1 ⊇ GH2 .
(g) If G1 ⊆ G2 then G{G1} = G{G1,G2}.

3. Sufficient conditions

Formally,wewrite an SFSC asG is H-free ⇒ G ∈ F . This expression is logically equivalent toG ∈ F ⇒ ∃H ∈ H s.t. H ⊆

G, where F = G \ F is the complement of the graph class F . The task of finding an SFSC can thus be defined as follows:
find a set of graphs H such that

∀G ∈ F , ∃H ∈ H s.t. H ⊆ G.

While a graph class F can havemany SFSCs, these may not be equally useful. For instance, H = F is an SFSC of F , but is
as complex as the class F itself. Moreover, let H be the graph composed of a single vertex, H = {H} is an SFSC of F since H
is a subgraph of all graphs of F . However, H offers no real information on F , since each graph of F also has H as subgraph,
i.e. F ∩GH = ∅. To find useful SFSCs, we need to introduce two partial orders that measure the tightness and simplicity. The
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