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a b s t r a c t

In this paper,we study the hop constrained chain polytope, that is, the convex hull of the in-
cidence vectors of (s, t)-chains using atmost k arcs of a given digraph, and its dominant.We
use extended formulations (implied by the inherent structure of the Moore–Bellman–Ford
algorithm) to derive facet defining inequalities for these polyhedra via projection. Our find-
ings result in characterizations of all facet defining 0/ ± 1-inequalities for the hop con-
strained chain polytope and all facet defining 0/1-inequalities for its dominant. Although
the derived inequalities are already known, such classifications were not previously given
to the best of our knowledge. Moreover, we use this approach to generalize so called jump
inequalities, which have been introduced in a paper by Dahl and Gouveia in 2004.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Let D = (V , A) be a directed graph without parallel arcs. An (s, t)-chain is a sequence of arcs C = (a1, a2, . . . , ar) such
that ai = (ip−1, ip) for p = 1, . . . , r , with i0 = s and ir = t . The nodes i1, i2, . . . , ir−1 are the internal nodes of C . If all arcs ai
are distinct, then C is called a walk; If all nodes ip are distinct, then C is called a path. In what follows, chains will be usually
denoted only as a sequence of nodes, but their incidence vectors are defined in the arc space RA. Here, for any chain C , its
incidence vector χC

∈ RA is defined by

χC
a := number of times the arc a is used by C,

for a ∈ A. Note that different chains may have the same incidence vector.
Given a length function d : A → R, the length of a chain

C = (i0, i1, i2, . . . , iq)

is defined as d(C) :=
q

p=1 d((ip−1, ip)). In the hop constrained shortest chain (walk, path) problemwe are looking for a chain
(walk, path) using at most k arcs of minimum length. The hop constrained shortest path problem, which is known to be
NP-hard, arises, for instance, in the design of telecommunication networks when data have to be sent along paths that must
not contain more than a certain number of intermediate nodes in order to guarantee a minimum level of service quality
[14,8].

The corresponding chain problem is a combinatorial relaxation of this problem which can be solved in polynomial time
with the Moore–Bellman–Ford algorithm [3,11,24], see Algorithm 1. Using an integer programming approach for the hop
constrained path problem, valid inequalities for the easier chain problem are of interest, since they are also valid inequalities
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for the harder problem. Thus, a branch-and-cut algorithm for solving the path problem, for example, directly benefits from
efficient separation routines for the polyhedron associated with the chain problem.

Algorithm 1: Moore–Bellman–Ford

Input:

Output:

A digraphD = (V , A), a fixed node s ∈ V , and a length function d : A → R.
For each node j ∈ V and each number ℓ ∈ {0, . . . , |V | − 1}, the length u(ℓ)

j
of a shortest (s, j)-chain using at most ℓ arcs and its predecessor p(j, ℓ) on
such a chain. If j is not reachable from s, then u(ℓ)

j = +∞ and p(j, ℓ) is
undefined for all ℓ.

(1) Set u(0)
s := 0 and u(0)

j := +∞ for all j ∈ V \ {s}.
(2) for ℓ := 1 to |V | − 1 do

Set tj := u(ℓ−1)
j for all j ∈ V .

forall (i, j) ∈ A do
if tj > u(ℓ−1)

i + d((i, j)) then
Set tj := u(ℓ−1)

i + d((i, j)) and p(j, ℓ) := i.
Set u(ℓ)

j := tj for all j ∈ V .

In this paper, we present some results on the hop constrained chain polytope C≤k, that is, the convex hull of the incidence
vectors of chains using at most k arcs, and its dominant dmt(C≤k) := C≤k

+RA
+
, whereRA

+
is the nonnegative orthant. In the

last years, closely related polyhedra have been investigated, see, for instance, [2,6,7,9,10,12,17–20,23,25,26], in particular
the hop constrained path polytope P ≤k defined as the convex hull of the incidence vectors of hop constrained (s, t)-paths.
Important for our context are the following three results.

Fact 1 ([26]). The integer points of P ≤k are characterized by the system

xii = 0, (i, i) ∈ A, (1)

x(δin(s)) = 0, (2)

x(δout(t)) = 0, (3)

x(δout(s)) = 1, (4)

x(δin(t)) = 1, (5)

x(δout(i)) − x(δin(i)) = 0, i ∈ V \ {s, t}, (6)

x(A) ≤ k, (7)

x(δout(i)) ≤ 1, i ∈ V \ {s, t}, (8)

x(δout(S)) − x(δout(j)) ≥ 0, S ⊂ V , s, t ∈ S, j ∈ V \ S, (9)

xij ∈ {0, 1}, (i, j) ∈ A. (10)

Here, for any S ⊆ V , δout(S) := {(i, j) ∈ A : i ∈ S, j ∈ V \ S} and δin(S) := {(i, j) ∈ A : i ∈ V \ S, j ∈ S}. For nodes j ∈ V ,
we write δout(j) and δin(j) instead of δout({j}) and δin({j}), respectively. Moreover, for any B ⊆ A, x(B) :=


a∈B xa.

Fact 2 (Dahl and Gouveia [7]). The nonnegativity constraints xij ≥ 0 for all (i, j) ∈ A, the Eqs. (2)–(6), and the inequalities

xsi −


j∈V\{s,t}

xij ≥ 0 for all i ∈ V \ {s, t}

provide a complete linear description of P≤3
s,t-path(D).

Fact 3 (Dahl, Foldnes, and Gouveia [6]). The 4-hop constrained walk polytope W≤4(D) is determined by the Eqs. (2)–(6), the
nonnegativity constraints xij ≥ 0 for all (i, j) ∈ A, and the inequalities

i∈I

xsi +

j∈J

xjt −


i∈I,j∈J

xij ≥ 0 (11)

for all I, J ⊆ V \ {s, t}.
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