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a b s t r a c t

Two lower bounds for the treewidth of product graphs are presented in terms of the
bramble number. The first bound is that the bramble number of the Cartesian product of
graphs G1 and G2 must be at least the product of the Hadwiger number of G1 and the PI
number of G2, where the PI number is a new graph parameter introduced in this paper. The
second bound is that the bramble number of the strong product of graphs G1 and G2 must
be at least the product of the Hadwiger number of G1 and the bramble number of G2. We
also demonstrate applications of the lower bounds.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The concept of treewidth has contributed greatly to pure and algorithmic graph theories in the recent decades. In rough
terms, the treewidth of a graph G, denoted by tw(G), is a graph parameter that measures the proximity of G to a tree. In
this paper, we present two lower bounds for the treewidth of product graphs. For this purpose, instead of the treewidth,
we use another graph parameter known as the bramble number, which is essentially the same as the treewidth. A bramble
B = {B1, . . . , B|B|} of G is a collection of the vertex sets of connected subgraphs of G such that any Bi and Bj in B intersect
or are joined by an edge. The order of B is the least number of vertices required to cover every Bi in B. In other words, it
is the size of a minimum hitting set of B. The bramble number of a graph G, denoted by bn(G), is the maximum order of all
brambles of G. Seymour and Thomas [22] showed that bn(G) = tw(G) + 1 for any graph G. A merit of using a bramble is
that a lower bound for the treewidth may be found constructively. That is, if we construct a bramble of order greater than k,
then the bramble is a certificate of a lower bound k of the treewidth.

1.1. Motivation

Our study was motivated by the following natural question that arises from a study of the inapproximability of the
bramble number: is there a graph product operation under which the treewidth of a resulting product graph can be
determined only by the treewidths of its factor graphs? We explain how this question relates to the inapproximability
by providing a famous example. The clique number ω(G) of a graph G is the size of amaximum clique in G. The strong product
ofG1 = (V1, E1) andG2 = (V2, E2), denoted byG1�G2, is the graphwith the vertex set V1×V2, in which two vertices (u1, v1)
and (u2, v2) are adjacent if and only if u1 = u2 or {u1, u2} ∈ E1, and v1 = v2 or {v1, v2} ∈ E2 (see Fig. 1 for an example). It is
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Fig. 1. The strong product of two paths.

not difficult to observe that ω(G1 �G2) = ω(G1) ·ω(G2) for any graphs G1 and G2. Hence, if we denote the strong power of k
copies of G as G′, then ω(G′) = (ω(G))k. Furthermore, it is known that for a given clique C ′ of G′, we can compute a clique C
of G with size at least |C ′

|
1/k in polynomial time. This fact can be used to amplify the approximation hardness of the clique

number as follows (see [1, Section 6.4]). Assume that there is an α-approximation algorithm A for the clique number with
a constant approximation ratio α > 1; that is, for any input, A outputs a clique of size at least 1/α of the maximum. Let A′

be the following (polynomial-time) algorithm:

1. compute the strong power G′ of k copies of G;
2. apply A to G′ and obtain a clique C ′ of size at least α−1

· ω(G′);
3. compute a clique C of Gwith size at least |C ′

|
1/k from C ′;

4. output C .

From the above discussion, it follows that

|C | ≥ |C ′
|
1/k

≥ (α−1
· ω(G′))1/k = (α−1

· ω(G)k)1/k = α−1/k
· ω(G).

This implies that A′ is an α1/k-approximation algorithm for the clique number. Therefore, for any r > 1, we can obtain a
polynomial-time r-approximation algorithm for the clique number by setting k ≥ logα/ log r . That is, A′ is a PTAS for the
maximum clique problem. On the other hand, it can be shown using the PCP theorem that such a PTAS does not exist unless
P = NP (see [1, Section 6.4]). Hence, there is no constant-factor approximation algorithm for the clique number, unless
P = NP. Note that the PCP theorem allows us to have a stronger approximation hardness for clique. See Håstad’s result [15]
that shows the n1−ϵ approximation hardness for any ϵ > 0.

The approximability of the treewidth (and thus, that of the bramble number) is well studied. The best known
approximation ratio O

√
log opt


, where opt is the optimum value, was derived by Feige, Hajiaghayi, and Lee [12]. On

the other hand, inapproximability is a long-standing open issue. The only known fact is the hardness of additive error
approximation. Bodlaender, Gilbert, Hafsteinsson, and Kloks [4] showed that no polynomial-time algorithm A for the
treewidth of a graph G can guarantee A(G) ≤ tw(G) + |V (G)|ϵ for any constant ϵ < 1 unless P = NP. It is not known
whether the problem admits a PTAS or a constant factor approximation algorithm. If we have a graph product ⊗ such
that tw(G1 ⊗ G2) = tw(G1) · tw(G2) or at least tw(G ⊗ G) = (tw(G))2, and we also have a polynomial-time algorithm
for computing a tree-decomposition of G with width at most w1/k from a tree-decomposition of


1≤i≤k G with width w,

then having a constant factor approximation is equivalent to having a PTAS for treewidth. This may help in the study of
inapproximability of treewidth.

Quite recently, Austrin, Pitassi, and Wu [2] have proved, assuming the recently introduced Small Set Expansion (SSE)
conjecture [19], that approximating the treewidth of a graph in any constant factor is NP-hard. They mentioned that since
the status of the SSE conjecture is very uncertain, their inapproximability result should not be taken as the absolute evidence
that there is no constant factor approximation for treewidth.

1.2. Our results

Our original motivation was to study the possibility of the existence of a graph product operation ⊗ such that bn(G1 ⊗

G2) = bn(G1) · bn(G2) for any graphs G1 and G2, or at least, bn(G ⊗ G) = (bn(G))2 for any graph G. This work presents the
first step for this direction in the study of the inapproximability of the bramble number (and treewidth). In this work, we
present two lower bounds for the bramble number of product graphs in terms of two related graph parameters. We first
show that the bramble number of the Cartesian product of graphs G1 and G2 is at least the product of the PI number of G1
and the Hadwiger number of G2; that is, in our terminology, bn(G1�G2) ≥ ι(G1) · η(G2), where ι(G) and η(G) denote the PI
number and the Hadwiger number of G, respectively. Next, we show, using a similar argument, that the bramble number of
the strong product of graphs G1 and G2 is at least the product of the bramble number of G1 and the Hadwiger number of G2;
that is, bn(G1 � G2) ≥ bn(G1) · η(G2). See Section 2 for the definitions and descriptions of notations used.

We also demonstrate applications of the lower bounds. By applying one lower bound, we determine, with an additive
error of 1, the treewidth of the Cartesian product graph of a complete graph and a grid. We also apply the lower bound to
the Cartesian product graph of a complete graph and a complete multipartite graph. Unfortunately, our two lower bounds
are very weak in the case where both the factor graphs have small treewidth. For example, although bn(Pn�Pn) = n+1 and
bn(Pn � Pn) ≥ n + 1, the lower bound functions give bn(Pn�Pn) ≥ ι(Pn) · η(Pn) = 2 and bn(Pn � Pn) ≥ bn(Pn) · η(Pn) = 4,
where Pn is the path of n vertices. On the other hand, these lower bounds work well in the case where one of the two factor
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