Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Perfect domination sets in Cayley graphs

Young Soo Kwon, Jaeun Lee*

Department of Mathematics, Yeungnam University, Gyeongsan, 712-749, South Korea

ARTICLE INFO

Article history: Received 26 October 2012 Received in revised form 3 September 2013 Accepted 27 September 2013 Available online 17 October 2013

Keywords: Cayley graph Perfect domination set Graph bundle

1. Introduction

ABSTRACT

In this paper, we get some results related to perfect domination sets of Cayley graphs. We show that if a Cayley graph C(A, X) has a perfect dominating set S which is a normal subgroup of A and whose induced subgraph is F, then there exists an F-bundle projection $p : C(A, X) \to K_m$ for some positive integer m. As an application, we show that for any positive integer n, the following are equivalent: (a) the hypercube Q_n has a perfect total domination set, (b) $n = 2^m$ for a positive integer m, (c) Q_n is a $2^{n-\log_2 n-1}K_2$ -bundle over the complete graph K_n and (d) Q_n is a covering of the complete bipartite graph $K_{n,n}$.

© 2013 Elsevier B.V. All rights reserved.

Let *G* be a connected finite simple graph with vertex set V(G) and edge set E(G). The *neighborhood* of a vertex $v \in V(G)$, denoted by N(v), is the set of vertices adjacent to v. We use |X| for the cardinality of a set *X*.

A subset *S* of *V*(*G*) is called a *perfect domination set* (PDS) of *G* if for each $v \in V(G) - S$, there exists a unique element $s \in S$ such that v and s are adjacent. A perfect domination set is efficient if *S* is independent. A subset *S* of *V*(*G*) is called a *perfect total domination set* (PTDS) of *G* if for each $v \in V(G)$, there exists a unique element $s \in S$ such that v and s are adjacent. For a graph *H*, a subset *S* of *V*(*G*) is called an *H*-PDS if *S* is a PDS and the subgraph $\langle S \rangle$ induced by *S* is isomorphic to *H*. Notice that if *H* is the null graph, then *H*-PDS is just an efficient perfect domination set (EPDS), and if $\langle S \rangle$ is isomorphic to the disjoint union of *m* copies of K_2 , then *H*-PDS is just a PTDS.

A permutation graph was introduced by Chartrand and Harary in [1] as a generalization of the Petersen graph and a graph bundle was obtained by Mohar et al. [6] as a generalization of the covering graph. A permutation graph over a given graph *G* was introduced by Lee and Sohn [5] as a generalization of both a permutation graph and a graph bundle over a graph. For completeness we recall the definition. Every edge of a graph *G* gives rise to a pair of oppositely directed edges. By $e^{-1} = vu$, we mean the edge reverse to a directed edge e = uv. We denote the set of directed edges of *G* by D(G). Following Gross and Tucker [3] a (*permutation*) voltage assignment ϕ of *G* is a function $\phi : D(G) \rightarrow \mathscr{S}_n$ with the property that $\phi(e^{-1}) = \phi(e)^{-1}$ for each $e \in D(G)$. Let $C^1(G; \mathscr{S}_n)$ denote the set of all voltage assignments of *G*. Let *F* be another graph with $V(F) = \{v_1, v_2, \ldots, v_m\}$. For a voltage assignment $\phi \in C^1(G; \mathscr{S}_m)$ of *G*, we construct a new graph $G \bowtie^{\phi} F$ as follows: $V(G \bowtie^{\phi} F) = V(G) \times V(F)$, and two vertices (u_i, v_h) and (u_j, v_k) are adjacent in $G \bowtie^{\phi} F$ if either $u_i u_j \in D(G)$ and $v_k = \phi(u_i u_j) v_h$ or $u_i = u_j$ and $v_h v_k \in E(F)$. This new graph $G \bowtie^{\phi} F$ is called an *F-permutation graph* over *G* and the first coordinate projection $p^{\phi} : G \bowtie^{\phi} F \to G$ is called the *F*-permutation graph. Note that the set of all graph automorphisms of *F* forms a subgroup of \mathscr{S}_m and is denoted by Aut (*F*). If ϕ takes its values in Aut (*F*), then the *F*-permutation graph $G \bowtie^{\phi} F$

^{*} Corresponding author. Tel.: +82 53 810 2311; fax: +82 53 810 4614. *E-mail address*: julee@yu.ac.kr (J. Lee).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.dam.2013.09.020

is just an *F*-bundle $G \times^{\phi} F$ over *G*, where the *F*-permutation projection $p^{\phi} : G \bowtie^{\phi} F \to G$ is the bundle projection. Moreover if *F* is the null graph of order *n*, then it is just an *n*-fold covering G^{ϕ} over *G*.

Let A be a group and let $X = \{x_1, ..., x_n\}$ be a symmetric generating set for A, i.e., $X^{-1} = \{x^{-1} : x \in X\} = X$. From now on, we will assume that the generating sets considered do not contain the identity element of A. The Cayley graph C(A, X) is a graph whose vertex set is A, and two vertices g and h are adjacent if and only if $h = gx_i$ for some $x_i \in X$.

In this paper, we get some results related to perfect domination sets of Cayley graphs. In Section 3, we show that if a Cayley graph $C(\mathcal{A}, X)$ has a perfect dominating set *S* which is a normal subgroup of \mathcal{A} and whose induced subgraph is *F*, then there exists an *F*-bundle projection $p : C(\mathcal{A}, X) \to K_m$ for some positive integer *m*. As an application, in Section 4 we get some equivalent statements for the hypercube Q_n to have a perfect total domination set.

2. Perfect domination sets and permutation graphs

- **Lemma 1.** (a) Suppose that S_1 and S_2 are two disjoint perfect domination sets of a graph *G*. Then $|S_1| = |S_2|$ and the set $E(S_1, S_2)$ of all edges between S_1 and S_2 forms a perfect matching in the induced subgraph $\langle S_1 \cup S_2 \rangle$.
- (b) Suppose that S_1 and S_2 are two perfect domination sets such that the maximum degrees of the induced graphs $\langle S_1 \rangle$ and $\langle S_2 \rangle$ are at most 1 and each isolated vertex of the induced subgraph $\langle S_1 \cap S_2 \rangle$ is either an isolated vertex in both $\langle S_1 \rangle$ and $\langle S_2 \rangle$ or a vertex of degree 1 in both $\langle S_1 \rangle$ and $\langle S_2 \rangle$. Then $|S_1| = |S_2|$. In particular, if both S_1 and S_2 are EDSs or both are PTDSs, then $|S_1| = |S_2|$.

Proof. (a) is clear. Now, we aim to prove (b). We decompose the set $S_1 \cup S_2$ as follows:

 $(S_1 \setminus S_2) \cup (S_2 \setminus S_1) \cup I \cup ((S_1 \cap S_2) \setminus I),$

where *I* is the set of isolated vertices in the induced subgraph $(S_1 \cap S_2)$. For each $s_1 \in S_1 \setminus S_2$, there exists a unique vertex s_2 in S_2 such that s_1 and s_2 are adjacent. If s_2 belongs to $S_1 \cap S_2$, then there is a unique $s'_2 \in S_2 \setminus S_1$ adjacent to s_2 by our assumption. Let us define $f : S_1 \setminus S_2 \to S_2 \setminus S_1$ by

 $f(s_1) = \begin{cases} s_2 & \text{if } s_2 \in S_2 \setminus S_1 \\ s'_2 & \text{if } s_2 \in S_1 \cap S_2. \end{cases}$

Then *f* is injective and hence $|S_1 \setminus S_2| \le |S_2 \setminus S_1|$. This implies that $|S_1| \le |S_2|$. Similarly one can show that $|S_2| \le |S_1|$. This completes the proof. \Box

Lemma 2. Let *F* be a graph and let S_1, \ldots, S_n be n *F*-PDSs of a graph *G* which are pairwise mutually disjoint. Then the subgraph *H* induced by $S_1 \cup \cdots \cup S_n$ is an *F*-permutation graph over the complete graph K_n .

Proof. It comes from Lemma 1(a) that the set $E(S_i, S_j)$ forms a perfect matching for any distinct integers i, j = 1, ..., n. For convenience, we identify the set S_i with the set $N_m = \{1, 2, ..., m = |V(F)|\}$. Then the set $E(S_i, S_j)$ induces a permutation $\sigma_{ij} : N_m \to N_m$ for any distinct integers i, j = 1, ..., n. We define a permutation voltage assignment $\phi : D(K_n) \to \mathscr{S}_m$ by $\phi(v_i v_j) = \sigma_{ij}$. Then the *F*-permutation graph $K_n \bowtie^{\phi} F$ is isomorphic to *H*. In fact, for each i = 1, 2, ..., n, by identifying S_i with $(p^{\phi})^{-1}(v_i)$, we can get an isomorphism between *H* and $K_n \bowtie^{\phi} F$. \Box

Lemma 3. Let F, G and H be simple graphs and let $p : G \to H$ be an F-permutation projection. Let S be a PDS of H. Then $p^{-1}(S)$ is a PDS of G. In particular, if S is independent, then $p^{-1}(S)$ is an |S|F-PDS of G.

Proof. Let $v \in V(G) \setminus p^{-1}(S)$. Then $p(v) \in V(H) \setminus S$. Since *S* is a PDS of *H*, there exists a unique $s \in S$ such that *s* is adjacent to p(v). It comes form the definition of *F*-permutation projection that the edge set $E(p^{-1}(s), p^{-1}(p(v)))$ induces a bijection $\sigma \in \delta_{|V(F)|}$. In fact, if the voltage assignment associated with the *F*-permutation projection p is $\phi : D(H) \rightarrow \delta_{|V(F)|}$, then $\phi(s p(v)) = \sigma$. Since $v \in p^{-1}(p(v))$, there exists a unique $\tilde{s} \in p^{-1}(s)$ such that v and \tilde{s} are adjacent in *G*. This says that $p^{-1}(S)$ is a domination set of *G*. In order to show perfectness, we assume that v is adjacent to $\tilde{s}' \in p^{-1}(S)$. Then p(v) and $p(\tilde{s}') \in S$, $p(\tilde{s}')$ must be *s*. This implies that \tilde{s}' must be \tilde{s} and hence $p^{-1}(S)$ is a perfect domination set of *G*.

Assume that *S* is independent. Since $p^{-1}(s)$ is isomorphic to *F* for each $s \in S$ and *S* is independent, the subgraph induced by $p^{-1}(S)$ is isomorphic to the union of |S| copies of *F*. Now it comes from the first statement that $p^{-1}(S)$ is an |S|F-PDS of *G*. \Box

Corollary 4. For two simple graphs *F* and *G* and for a positive integer *n*, *G* is an *F*-permutation graph over the complete graph K_n if and only if *G* has a vertex partition $\{S_1, \ldots, S_n\}$ such that S_i is an *F*-PDS for each $i = 1, 2, \ldots, n$.

Proof. The sufficiency follows from Lemma 2. For the necessity, let $p : G \to K_n$ be an *F*-permutation projection. Since for each $v \in V(K_n)$, $\{v\}$ is an independent perfect domination set of K_n , $p^{-1}(v)$ is an *F*-PDS of *G* by Lemma 3. Since *p* is an *F*-permutation projection, $p^{-1}(u)$ and $p^{-1}(v)$ are disjoint for any two distinct vertices *u* and *v* of K_n and hence $\{p^{-1}(v) : v \in V(K_n)\}$ is a partition of V(G). This completes the proof. \Box

Download English Version:

https://daneshyari.com/en/article/6872503

Download Persian Version:

https://daneshyari.com/article/6872503

Daneshyari.com