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a b s t r a c t

A set S ⊆ V is independent in a graph G = (V , E) if no two vertices from S are adjacent.
The independence number α(G) is the cardinality of a maximum independent set, while
µ(G) is the cardinality of a maximum matching in G. If α(G) + µ(G) = |V |, then G is a
König–Egerváry graph. The number

d (G) = max{|A| − |N (A)| : A ⊆ V }

is the critical difference of G (Zhang, 1990) [22], where N (A) = {v : v ∈ V ,N (v) ∩ A ≠ ∅}.
By core(G) (corona(G))we denote the intersection (union, respectively) of allmaximum

independent sets, and by ker (G) we mean the intersection of all critical sets. A connected
graph having only one cycle is called unicyclic.

It is known that the relation ker (G) ⊆ core (G) holds for every graph G (Levit, 2012)
[14], while the equality is true for bipartite graphs (Levit, 2013) [15]. For König–Egerváry
unicyclic graphs, the difference |core(G)| − |ker (G)| may equal any non-negative integer.

In this paperweprove that ifG is a non-König–Egerváry unicyclic graph, then: (i) ker (G)
= core (G) and (ii) |corona(G)| + |core(G)| = 2α (G) + 1. Pay attention that |corona(G)| +
|core(G)| = 2α (G) holds for every König–Egerváry graph (Levit, 2011) [11].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper G is a finite simple graph with vertex set V (G) and edge set E(G). If X ⊆ V (G), then G[X] is the
subgraph of G induced by X . By G − W wemean either the subgraph G[V (G) − W ], ifW ⊆ V (G), or the subgraph obtained
by deleting the edge set W , for W ⊆ E(G). In either case, we use G − w, whenever W = {w}. If A, B ⊆ V (G), then (A, B)
stands for the set {ab : a ∈ A, b ∈ B, ab ∈ E (G)}.

The neighborhood N(v) of a vertex v ∈ V (G) is the set {w : w ∈ V (G) and vw ∈ E (G)}, while the closed neighborhood
N[v] of v ∈ V (G) is the set N(v) ∪ {v}; in order to avoid ambiguity, we also use NG(v) instead of N(v). The neighborhood
N(A) of A ⊆ V (G) is {v ∈ V (G) : N(v) ∩ A ≠ ∅}, and N[A] = N(A) ∪ A. We may also use NG(A) and NG [A] for clarity when
referring to neighborhoods in a graph G.

By Cn, Kn we mean the chordless cycle on n ≥ 4 vertices, and respectively the complete graph on n ≥ 1 vertices.
A set S ⊆ V (G) is independent if no two vertices from S are adjacent, and by Ind(G) we mean the family of all the

independent sets ofG. An independent set ofmaximum size is amaximum independent set ofG, and the independence number
α(G) is the cardinality of a maximum independent set of G.

A matching is a set M of pairwise non-incident edges of G. For xy ∈ M , we say that the vertices x and y are matched by
M . The matching M is from A into B if every vertex of A is matched by M to some vertex from B. A matching of maximum

∗ Corresponding author. Tel.: +972 3 9066163; fax: +972 3 9066692.
E-mail addresses: levitv@ariel.ac.il (V.E. Levit), eugen_m@hit.ac.il (E. Mandrescu).

0166-218X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.dam.2013.09.006

http://dx.doi.org/10.1016/j.dam.2013.09.006
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2013.09.006&domain=pdf
mailto:levitv@ariel.ac.il
mailto:eugen_m@hit.ac.il
http://dx.doi.org/10.1016/j.dam.2013.09.006


410 V.E. Levit, E. Mandrescu / Discrete Applied Mathematics 162 (2014) 409–414

Fig. 1. A König–Egerváry graph with α(G) = |{a, b, c, x}| and µ(G) = |{au, cv, xy}|.

Fig. 2. G is a unicyclic graph with V (C) = {y, d, t, c, w} and N (C) = {x, f }.

cardinality is amaximum matching, and its size is denoted by µ(G). The matching number is also denoted by α′ (G), since it
is the independence number of the line graph. Other standard notations from graph theory may be found in [20].

Let core(G) =


{S : S ∈ Ω(G)} [7], and corona(G) =


{S : S ∈ Ω(G)} [1], where Ω(G) = {S : S is a maximum
independent set of G}. The problem of whether core(G) ≠ ∅ is NP-hard [1].

Theorem 1.1 ([1]). For every S ∈ Ω (G), there is a matching from S − core(G) into corona(G) − S.

Notice that α(G) ≤ α(G− e) ≤ α(G)+1 holds for each edge e. An edge e ∈ E(G) is α-criticalwhenever α(G− e) > α(G).
An edge e ∈ E(G) is µ-critical provided µ(G − e) < µ(G).

For X ⊆ V (G), the number |X | − |N(X)| is the difference of X , denoted by d(X). The critical difference d(G) is max{d(X) :

X ⊆ V (G)}. The number max{d(I) : I ∈ Ind(G)} is the critical independence difference of G, denoted by id(G). Clearly,
d(G) ≥ id(G) is true for every graph G. It was shown in [22] that d(G) = id(G) holds for every graph G. If A is an independent
set with difference id(G), then A is a critical independent set [22].

For a graph G, let denote ker(G) =


{S : S is a critical set} [14].

Theorem 1.2. (i) [14] ker (G) is the unique minimal critical (independent) set of G and ker (G) ⊆ core(G);
(ii) [15] ker (G) = core(G), whenever G is bipartite.

Some other structural properties of ker(G) may be found in [17].
It is well-known that

⌊n/2⌋ + 1 ≤ α(G) + µ(G) ≤ n
hold for any graph G with n vertices. If α(G) + µ(G) = n, then G is a König–Egerváry graph [4,19]. Several properties of
König–Egerváry graphs are presented in [12,16].

According to a celebrated result of König and Egerváry, every bipartite graph is a König–Egerváry graph [5,6]. This class
also includes non-bipartite graphs (see, for example, the graph G in Fig. 1).

Theorem 1.3 ([8]). If G is a König–Egerváry graph, then every maximum matching matches N(core(G)) into core(G).

The graph G is unicyclic if it is connected and has a unique cycle, which we denote by C = (V (C), E (C)). Let N1(C) = {v :

v ∈ V (G) − V (C),N(v) ∩ V (C) ≠ ∅}, and Tx = (Vx, Ex) be the maximum subtree of G − xy containing x, where x ∈ N1(C)
and y ∈ V (C) (see, for an example, Fig. 2).

The following result shows that a unicyclic graph is either a König–Egerváry graph or each edge of its cycle is α-critical.

Lemma 1.4 ([13]). If G is a unicyclic graph of order n, then
(i) n − 1 ≤ α(G) + µ(G) ≤ n;
(ii) n − 1 = α(G) + µ(G) if and only if each edge of the unique cycle is α-critical.

For more properties of critical edges in König–Egerváry graphs, see [9].

Theorem 1.5 ([13]). Let G be a unicyclic non-König–Egerváry graph. Then the following assertions are true:
(i) each W ∈ Ω (Tx) can be enlarged to some S ∈ Ω (G);
(ii) S ∩ V (Tx) ∈ Ω (Tx) for every S ∈ Ω (G);
(iii) core (G) =


{core (Tx) : x ∈ N1 (C)}.

Unicyclic graphs keep enjoying plenty of interest, as one can see, for instance, in [2,3,10,18,21]. Our decision of
concentrating on unicyclic graphs is based on their striking similarities to König–Egerváry graphs. For instance, unicyclic
non-König–Egerváry graphs satisfy
• the fact that |core(G)| ≠ 1, like bipartite graphs [7];
• the equality ker (G) = core(G), like bipartite graphs [15];
• the property that core(G) is critical, like König–Egerváry graphs [12].

In this paper we analyze various relationships between several parameters of a unicyclic graph G, namely, core(G),
corona(G), and ker (G).
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