Note

On the intersection of all critical sets of a unicyclic graph

Vadim E. Levit ${ }^{\text {a,*, }}$, Eugen Mandrescu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science and Mathematics, Ariel University, Israel
${ }^{\mathrm{b}}$ Department of Computer Science, Holon Institute of Technology, Israel

A R T I CLE I N F O

Article history:

Received 7 May 2013
Received in revised form 29 August 2013
Accepted 20 September 2013
Available online 16 October 2013

Keywords:

Maximum independent set
Critical set
Core
Corona
Ker
Unicyclic graph
König-Egerváry graph

Abstract

A set $S \subseteq V$ is independent in a graph $G=(V, E)$ if no two vertices from S are adjacent. The independence number $\alpha(G)$ is the cardinality of a maximum independent set, while $\mu(G)$ is the cardinality of a maximum matching in G. If $\alpha(G)+\mu(G)=|V|$, then G is a König-Egerváry graph. The number $$
d(G)=\max \{|A|-|N(A)|: A \subseteq V\}
$$ is the critical difference of G (Zhang, 1990) [22], where $N(A)=\{v: v \in V, N(v) \cap A \neq \emptyset\}$. By core (G) (corona (G)) we denote the intersection (union, respectively) of all maximum independent sets, and by ker (G) we mean the intersection of all critical sets. A connected graph having only one cycle is called unicyclic.

It is known that the relation $\operatorname{ker}(G) \subseteq$ core (G) holds for every graph G (Levit, 2012) [14], while the equality is true for bipartite graphs (Levit, 2013) [15]. For König-Egerváry unicyclic graphs, the difference $|\operatorname{core}(G)|-|\operatorname{ker}(G)|$ may equal any non-negative integer.

In this paper we prove that if G is a non-König-Egerváry unicyclic graph, then: (i) ker (G) $=$ core (G) and (ii) $|\operatorname{corona}(G)|+|\operatorname{core}(G)|=2 \alpha(G)+1$. Pay attention that $|\operatorname{corona}(G)|+$ $|\operatorname{core}(G)|=2 \alpha(G)$ holds for every König-Egerváry graph (Levit, 2011) [11].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper G is a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. If $X \subseteq V(G)$, then $G[X]$ is the subgraph of G induced by X. By $G-W$ we mean either the subgraph $G[V(G)-W]$, if $W \subseteq V(G)$, or the subgraph obtained by deleting the edge set W, for $W \subseteq E(G)$. In either case, we use $G-w$, whenever $W=\{w\}$. If $A, B \subseteq V(G)$, then (A, B) stands for the set $\{a b: a \in A, b \in B, a b \in E(G)\}$.

The neighborhood $N(v)$ of a vertex $v \in V(G)$ is the set $\{w: w \in V(G)$ and $v w \in E(G)\}$, while the closed neighborhood $N[v]$ of $v \in V(G)$ is the set $N(v) \cup\{v\}$; in order to avoid ambiguity, we also use $N_{G}(v)$ instead of $N(v)$. The neighborhood $N(A)$ of $A \subseteq V(G)$ is $\{v \in V(G): N(v) \cap A \neq \emptyset\}$, and $N[A]=N(A) \cup A$. We may also use $N_{G}(A)$ and $N_{G}[A]$ for clarity when referring to neighborhoods in a graph G.

By C_{n}, K_{n} we mean the chordless cycle on $n \geq 4$ vertices, and respectively the complete graph on $n \geq 1$ vertices.
A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent, and by $\operatorname{Ind}(G)$ we mean the family of all the independent sets of G. An independent set of maximum size is a maximum independent set of G, and the independence number $\alpha(G)$ is the cardinality of a maximum independent set of G.

A matching is a set M of pairwise non-incident edges of G. For $x y \in M$, we say that the vertices x and y are matched by M. The matching M is from A into B if every vertex of A is matched by M to some vertex from B. A matching of maximum

[^0]

Fig. 1. A König-Egerváry graph with $\alpha(G)=|\{a, b, c, x\}|$ and $\mu(G)=|\{a u, c v, x y\}|$.

Fig. 2. G is a unicyclic graph with $V(C)=\{y, d, t, c, w\}$ and $N(C)=\{x, f\}$.
cardinality is a maximum matching, and its size is denoted by $\mu(G)$. The matching number is also denoted by $\alpha^{\prime}(G)$, since it is the independence number of the line graph. Other standard notations from graph theory may be found in [20].

Let $\operatorname{core}(G)=\bigcap\{S: S \in \Omega(G)\}[7]$, and corona $(G)=\bigcup\{S: S \in \Omega(G)\}$ [1], where $\Omega(G)=\{S: S$ is a maximum independent set of $G\}$. The problem of whether $\operatorname{core}(G) \neq \emptyset$ is NP-hard [1].

Theorem 1.1 ([1]). For every $S \in \Omega(G)$, there is a matching from $S-\operatorname{core}(G)$ into corona $(G)-S$.
Notice that $\alpha(G) \leq \alpha(G-e) \leq \alpha(G)+1$ holds for each edge e. An edge $e \in E(G)$ is α-critical whenever $\alpha(G-e)>\alpha(G)$. An edge $e \in E(G)$ is μ-critical provided $\mu(G-e)<\mu(G)$.

For $X \subseteq V(G)$, the number $|X|-|N(X)|$ is the difference of X, denoted by $d(X)$. The critical difference $d(G)$ is $\max \{d(X)$: $X \subseteq V(G)\}$. The number $\max \{d(I): I \in \operatorname{Ind}(G)\}$ is the critical independence difference of G, denoted by id (G). Clearly, $d(G) \geq \operatorname{id}(G)$ is true for every graph G. It was shown in [22] that $d(G)=\operatorname{id}(G)$ holds for every graph G. If A is an independent set with difference $\operatorname{id}(G)$, then A is a critical independent set [22].

For a graph G, let denote $\operatorname{ker}(G)=\bigcap\{S: S$ is a critical set $\}$ [14].
Theorem 1.2. (i) [14] ker (G) is the unique minimal critical (independent) set of G and $\operatorname{ker}(G) \subseteq \operatorname{core}(G)$;
(ii) [15] $\operatorname{ker}(G)=\operatorname{core}(G)$, whenever G is bipartite.

Some other structural properties of $\operatorname{ker}(G)$ may be found in [17].
It is well-known that

$$
\lfloor n / 2\rfloor+1 \leq \alpha(G)+\mu(G) \leq n
$$

hold for any graph G with n vertices. If $\alpha(G)+\mu(G)=n$, then G is a König-Egerváry graph [4,19]. Several properties of König-Egerváry graphs are presented in [12,16].

According to a celebrated result of König and Egerváry, every bipartite graph is a König-Egerváry graph [5,6]. This class also includes non-bipartite graphs (see, for example, the graph G in Fig. 1).

Theorem 1.3 ([8]). If G is a König-Egerváry graph, then every maximum matching matches N (core(G)) into core (G).
The graph G is unicyclic if it is connected and has a unique cycle, which we denote by $C=(V(C), E(C))$. Let $N_{1}(C)=\{v$: $v \in V(G)-V(C), N(v) \cap V(C) \neq \emptyset\}$, and $T_{x}=\left(V_{x}, E_{x}\right)$ be the maximum subtree of $G-x y$ containing x, where $x \in N_{1}(C)$ and $y \in V(C)$ (see, for an example, Fig. 2).

The following result shows that a unicyclic graph is either a König-Egerváry graph or each edge of its cycle is α-critical.
Lemma 1.4 ([13]). If G is a unicyclic graph of order n, then
(i) $n-1 \leq \alpha(G)+\mu(G) \leq n$;
(ii) $n-1=\alpha(G)+\mu(G)$ if and only if each edge of the unique cycle is α-critical.

For more properties of critical edges in König-Egerváry graphs, see [9].
Theorem 1.5 ([13]). Let G be a unicyclic non-König-Egerváry graph. Then the following assertions are true:
(i) each $W \in \Omega\left(T_{x}\right)$ can be enlarged to some $S \in \Omega(G)$;
(ii) $S \cap V\left(T_{x}\right) \in \Omega\left(T_{x}\right)$ for every $S \in \Omega(G)$;
(iii) $\operatorname{core}(G)=\bigcup\left\{\operatorname{core}\left(T_{x}\right): x \in N_{1}(C)\right\}$.

Unicyclic graphs keep enjoying plenty of interest, as one can see, for instance, in $[2,3,10,18,21]$. Our decision of concentrating on unicyclic graphs is based on their striking similarities to König-Egerváry graphs. For instance, unicyclic non-König-Egerváry graphs satisfy

- the fact that $|\operatorname{core}(G)| \neq 1$, like bipartite graphs [7];
- the equality $\operatorname{ker}(G)=$ core (G), like bipartite graphs [15];
- the property that core (G) is critical, like König-Egerváry graphs [12].

In this paper we analyze various relationships between several parameters of a unicyclic graph G, namely, core (G), corona (G), and ker (G).

https://daneshyari.com/en/article/6872574

Download Persian Version:

https://daneshyari.com/article/6872574

Daneshyari.com

[^0]: * Corresponding author. Tel.: +972 3 9066163; fax: +972 39066692.

 E-mail addresses: levitv@ariel.ac.il (V.E. Levit), eugen_m@hit.ac.il (E. Mandrescu).

