Note

The matching energy of graphs with given parameters

Shuli Li ${ }^{\mathrm{a}}$, Weigen Yan ${ }^{\mathrm{b}, *}$
a School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
${ }^{\text {b }}$ School of Sciences, Jimei University, Xiamen 361021, China

A R T I C L E I N F O

Article history:

Received 11 May 2013
Received in revised form 19 July 2013
Accepted 24 September 2013
Available online 16 October 2013

Keywords:

Matching energy
Connectivity
Chromatic number

Abstract

Gutman and Wagner [I. Gutman, S. Wagner, The matching energy of a graph, Discrete Appl. Math. 160 (2012) 2177-2187] defined the matching energy of a graph and gave some properties and asymptotic results of the matching energy. In this paper, we characterize the connected graph G with the connectivity κ (resp. chromatic number χ) which has the maximum matching energy.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are concerned with undirected simple graphs (without multiple edges or loops). Let G be such a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Denote by $\kappa(G), \chi(G)$, and $\varepsilon(G)$ the connectivity (i.e., vertex connectivity), the chromatic number and the number of edges of a graph G, respectively. By $G-u$ we denote the induced subgraph obtained from G by deleting vertex u together with its incident edges and by $G-e$ the edge-induced subgraph obtained from G by deleting edge e. Let K_{n} be the complete graph and $K_{n_{1}, n_{2}, \ldots, n_{k}}$ the complete k-partite graph with $n=\sum_{i=1}^{k} n_{i}$ vertices, whose vertex set is partitioned into k parts: $V_{1}, V_{2}, \ldots, V_{k}$, of cardinalities $n_{1}, n_{2}, \ldots, n_{k}$, and the edge joins two vertices if and only if they belong to different parts. Write $T_{m, n}$ for the Turán graph, that is a complete m-partite graph in which each part has either $\lceil n / m\rceil$ or $\lfloor n / m\rfloor$ vertices. The vertex-disjoint union of two graphs G and H is denoted by $G \cup H$. Let $G \vee H$ be the graph obtained from $G \cup H$ by adding all possible edges from vertices of G to vertices of H, i.e., $G \vee H=\overline{\bar{G} \cup \bar{H}}$, where \bar{G} is the complement of G. $\operatorname{By} m(G, k)$ we denote the number of k-matchings ($=$ the number of selections of k-independent edges $=$ the number of k-element independent edge sets) of a graph G. Specifically, $m(G, 1)=\varepsilon(G)$ and $m(G, k)=0$ for $k>n / 2$. It is both consistent and convenient to define $m(G, 0)=1$. The Hosoya index $Z(G)$ is defined as the total number of the matchings. That is,

$$
Z(G)=m(G, 0)+m(G, 1)+\cdots+m\left(G,\left[\frac{n}{2}\right]\right) .
$$

The matching polynomial of a graph G with n vertices is defined as

$$
\begin{equation*}
\alpha(G)=\alpha(G, \lambda)=\sum_{k \geq 0}(-1)^{k} m(G, k) \lambda^{n-2 k} \tag{1}
\end{equation*}
$$

where $m(G, 0)=1$ and $m(G, k) \geq 0$ for all $k=1,2, \ldots,[n / 2]$. Its theory is well elaborated [2,4-6]. This expression for $\alpha(G, \lambda)$ induces a quasi-order relation (i.e., reflexive and transitive relation) on the set of all graphs with n vertices: If G and

[^0]H are two graphs with matching polynomial in the form (1), then the quasi-order \succeq is defined by
$$
G \succeq H \Longleftrightarrow m(G, k) \geq m(H, k) \quad \text { for all } k=0,1, \ldots,[n / 2]
$$

If $G \succeq H$ and there exists some k such that $m(G, k)>m(H, k)$, then we write $G \succ H$.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of a graph G, i.e., the eigenvalues of its (0,1)-adjacency matrix [3]. The energy of the graph G is then defined as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

The theory of graph energy is well developed nowadays; its details can be found in the book [10] and reviews [7,8].
Gutman and Wagner [9] defined the matching energy of a graph G with n vertices, denoted by $M E(G)$, as

$$
\begin{equation*}
M E=M E(G)=\frac{2}{\pi} \int_{0}^{\infty} x^{-2} \ln \left[\sum_{k \geq 0} m(G, k) x^{2 k}\right] d x \tag{2}
\end{equation*}
$$

They also pointed out that: if the graph G is a forest, its matching energy coincides with its energy.
The integral on the right hand side of Eq. (2) is increasing in all the coefficients $m(G, k)$. From this fact, one can readily deduce the extremal graphs for the matching energy. Since

$$
\begin{equation*}
m(G, k)=m(G-e, k)+m(G-u-v, k-1) \tag{3}
\end{equation*}
$$

holds for any edge e of the graph G, connecting the vertices u and v [4-6], we see that $m(G, k)$ can only increase when edges are added to a graph (and at least for $m(G, 1)$, the number increases strictly when this is done). From the definition of the matching energy, it is clear that: $G \succeq H \Longrightarrow M E(G) \geq M E(H)$ and $G \succ H \Longrightarrow M E(G)>M E(H)$. This increased property of $M E$ has been successfully applied in the study of the extremal values of the matching energy over a significant class of graphs, see the following results.

Theorem 1.1 ([9]). Let G be a graph and e an edge of G. Let $G-e$ be the subgraph obtained by deleting edge e from G, but keeping all the vertices of G. Then

$$
M E(G-e)<M E(G)
$$

Lemma 1.2 ([9]). Among all graphs with n vertices, the empty graph E_{n} without edges and the complete graph K_{n} have, respectively, minimum and maximum matching energy.

Lemma 1.3 ([9]). The connected graph with n vertices having minimum matching energy is the star S_{n}.
Lemma 1.4 ([9]). The bipartite graph with n vertices having maximum matching energy is $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$.
For the k-matching $m(G, k)$ of a graph G, if $k=1$, then $m(G, k)$ is the number of edges of G; if $k=\frac{n}{2}$ (n is even), then $m(G, k)$ is the number of perfect matchings $\phi(G)$ of G. For this, we review briefly some known results.

Theorem 1.5 ([1]). If G is a complete m-partite graph with n vertices, then $\varepsilon(G) \leq \varepsilon\left(T_{m, n}\right)$, with equality only if $G \cong T_{m, n}$.
Theorem 1.6 ([11]). Let G be a connected graph of order $2 n$ with connectivity $\kappa(G) \leq k$. Then the number of perfect matchings satisfies $\phi(G) \leq k[(2 n-3)!!]$.

Theorem 1.7 ([11]). Let G be a graph of order $2 n$ with the chromatic number $\chi(G) \leq k$. Then the number of perfect matchings satisfies $\phi(G) \leq \phi\left(T_{k, 2 n}\right)$.

Let $V_{n, k}$ be the set of connected graphs of order n with connectivity at most k. Xu, Li and Zhong [13] proved that $\left(K_{1} \cup K_{n-\kappa-1}\right) \vee K_{\kappa}$ is a unique graph in $V_{n, k}$ with maximal Hosoya index. Xu [12] also proved that: for all connected graphs of order n with chromatic number χ, Turán graph $T_{\chi, n}$ has the maximal Hosoya index.

In this paper, in addition to the results in [9,11-13], we proved that: if G is a connected graph of order n with connectivity κ, then for each $k, m(G, k) \leq m\left[\left(K_{1} \cup K_{n-\kappa-1}\right) \vee K_{\kappa}, k\right]$, and if G is a connected graph of order n with chromatic number χ, then for each $k, m(G, k) \leq m\left(T_{\chi, n}, k\right)$. These results characterize the connected graph G with the connectivity κ (resp. chromatic number $\chi(G)$) which has the maximum matching energy.

2. Main results

The following result generalizes the result of Theorem 1.5 and the one in Xu [12].
Lemma 2.1. Let G be a complete m-partite graph with n vertices, $0 \leq k \leq\lfloor n / 2\rfloor$. Then
$m(G, k) \leq m\left(T_{m, n}, k\right)$.
The equality holds if and only if $G \cong T_{m, n}$.

https://daneshyari.com/en/article/6872580

Download Persian Version:
https://daneshyari.com/article/6872580

Daneshyari.com

[^0]: * Corresponding author. Tel.: +86 5926181532.

 E-mail addresses: lishuli198710@163.com (S. Li), weigenyan@263.net, weigenyan@jmu.edu.cn (W. Yan).

