
A Game Semantics of
Concurrent Separation Logic

Paul-André Mellièsa Léo Stefanescob
a IRIF, CNRS, Université Paris Diderot

b École Normale Supérieure de Lyon

Abstract

In this paper, we develop a game-theoretic account of concurrent separation logic. To every execution trace
of the Code confronted to the Environment, we associate a specification game where Eve plays for the Code,
and Adam for the Environment. The purpose of Eve and Adam is to decompose every intermediate machine
state of the execution trace into three pieces: one piece for the Code, one piece for the Environment, and
one piece for the available shared resources. We establish the soundness of concurrent separation logic by
interpreting every derivation tree of the logic as a winning strategy of this specification game.

Keywords: Concurrent separation logic, game semantics specification logic

1 Introduction

Concurrent separation logic (CSL) is an extension of Reynold’s separation logic [12]
formulated by O’Hearn [10] to establish the correctness of concurrent imperative
programs with shared memory and locks. This specification logic enables one to
establish the good behavior of these programs in an elegant and modular way, thanks
to the frame rule of separation logic. A sequent of concurrent separation logic

r1 : P1, . . . , rn : Pn � {P}C {Q}
consists of a Hoare triple {P}C{Q} together with a context Γ = r1 : P1, . . . , rn : Pn

which declares a number of resource variables rk (or mutexes) together with the
CSL formula Pk which they satisfy as invariant. The validity of the program logic
relies on a soundness theorem, which states that the existence of a derivation tree in
concurrent separation logic π

...

r1 : P1, . . . , rn : Pn � {P}C {Q}
ensures (1) that the concurrent program C will not produce any race condition
at execution time, and (2) that the program C will transform every initial state

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 336 (2018) 241–256

1571-0661/© 2018 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.03.026

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.03.026
https://doi.org/10.1016/j.entcs.2018.03.026
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


satisfying P into a state satisfying Q when it terminates, as long as each resource rk
allocated in memory satisfies the CSL invariant Pk. The soundness of the logic was
established by Brookes in his seminal papers on the trace semantics of concurrent
separation logic [5,6]. His soundness proof was the object of great attention in the
community, and it was revisited in a number of different ways, either semantic [13],
syntactic [2] or axiomatic [7] and formalised in proof assistants. One main technical
challenge in all these proofs of soundness is to establish the validity of the concurrent
rule:

Γ � {P1}C1 {Q1} Γ � {P2}C2 {Q2}
Concurrent Rule

Γ � {P1 ∗ P2}C1 ‖ C2 {Q1 ∗Q2}
and of the frame rule:

Γ � {P}C {Q}
Frame Rule

Γ � {P ∗R}C {Q ∗R}
In this paper, we establish the validity of these two rules (and of CSL at large) based
on a new approach inspired by game semantics, which relies on the observation that
the derivation tree π of CSL defines a winning strategy [π] in a specification game.
As we will see, the specification game itself is derived from the execution of the
code C and its interaction with the environment (called the frame) using locks on
the shared memory. The specification game expresses the usual rely-and-guarantee
conditions as winning conditions in an interactive game played between Eve (for the
code) and Adam (for the frame).

In the semantic proofs of soundness, two notions of “state” are usually considered,
besides the basic notion memory state which describes the state of the variables
and of the heap: (1) the machine states which are used to describe the execution of
the code, and in particular include information about the status of the locks, and
(2) the logical states which include permissions and other information invisible at
the execution level, but necessary to specify the states in the logic. In particular,
the tensor product ∗ of separation logic requires information on the permissions,
and it is thus defined on logical states, not on machine states. The starting point
of the paper is the observation that there exists a third notion of state, which we
call separated state, implicitly at work in all the semantic proofs of soundness. A
separated state describes which part of the global (logical) state of the machine is
handled by each component interacting in the course of the execution. It is defined
as a triple (σC ,σ, σF ) consisting of

• the logical state σC ∈ LState of the code,
• the logical state σF ∈ LState of the frame,
• a function σ : {r1, . . . , rn} → LState + {C,F} which tells for every resource

variable r whether it is locked and owned by the code, σ(r) = C, locked and
owned by the frame, σ(r) = F , or available with logical state σ(r) ∈ LState.

This leads us to a “span”

machine states separated states logical statesrefines refines (1)

P.-A. Melliès, L. Stefanesco / Electronic Notes in Theoretical Computer Science 336 (2018) 241–256242



Download English Version:

https://daneshyari.com/en/article/6872737

Download Persian Version:

https://daneshyari.com/article/6872737

Daneshyari.com

https://daneshyari.com/en/article/6872737
https://daneshyari.com/article/6872737
https://daneshyari.com

