
Accepted Manuscript

Locality-aware and load-balanced static task scheduling for MapReduce

Oguz Selvitopi, Gunduz Vehbi Demirci, Ata Turk, Cevdet Aykanat

PII: S0167-739X(17)32926-6
DOI: https://doi.org/10.1016/j.future.2018.06.035
Reference: FUTURE 4297

To appear in: Future Generation Computer Systems

Received date : 24 December 2017
Revised date : 5 May 2018
Accepted date : 20 June 2018

Please cite this article as: O. Selvitopi, G.V. Demirci, A. Turk, C. Aykanat, Locality-aware and
load-balanced static task scheduling for MapReduce, Future Generation Computer Systems (2018),
https://doi.org/10.1016/j.future.2018.06.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2018.06.035


Locality-aware and load-balanced static task scheduling for MapReduceI

Oguz Selvitopia, Gunduz Vehbi Demircia, Ata Turkb, Cevdet Aykanata,∗

aBilkent University, Computer Engineering Department, 06800, Ankara, TURKEY
bBoston University, ECE Department, Boston, MA 02215

Abstract

Task scheduling for MapReduce jobs has been an active area of research with the objective of decreasing
the amount of data transferred during the shuffle phase via exploiting data locality. In the literature, gen-
erally only the scheduling of reduce tasks is considered with the assumption that scheduling of map tasks is
already determined by the input data placement. However, in cloud or HPC deployments of MapReduce,
the input data is located in a remote storage and scheduling map tasks gains importance. Here, we propose
models for simultaneous scheduling of map and reduce tasks in order to improve data locality and balance
the processors’ loads in both map and reduce phases. Our approach is based on graph and hypergraph
models which correctly encode the interactions between map and reduce tasks. Partitions produced by
these models are decoded to schedule map and reduce tasks. A two-constraint formulation utilized in these
models enables balancing processors’ loads in both map and reduce phases. The partitioning objective
in the hypergraph models correctly encapsulates the minimization of data transfer when a local combine
step is performed prior to shuffle, whereas the partitioning objective in the graph models achieve the same
feat when a local combine is not performed. We show the validity of our scheduling on the MapReduce
parallelizations of two important kernel operations–sparse matrix-vector multiplication (SpMV) and gener-
alized sparse matrix-matrix multiplication (SpGEMM)–that are widely encountered in big data analytics
and scientific computations. Compared to random scheduling, our models lead to tremendous savings in
data transfer by reducing data traffic from several hundreds of megabytes to just a few megabytes in the
shuffle phase and consequently leading up to 2.6x and 4.2x speedup for SpMV and SpGEMM, respectively.

Keywords: MapReduce, scheduling, data locality, load balance, map task, reduce task

1. Introduction

MapReduce [1] simplifies the programming for large-scale data-parallel applications and greatly reduces
the development effort by sparing the programmer from complex issues such as parallel execution, fault tol-
erance, data management, task scheduling, etc. Hadoop [2], an open source implementation of MapReduce,
has been used in production environments of many big companies and is deployed on clusters that can scale5

up to tens of thousands of cores. Its generality, ease of use and scalability led to a wide acceptance and
adoption in many fields.

A MapReduce job consists of map, shuffle and reduce phases which are carried out one after another
by multiple parallel tasks that process data in parallel. The map tasks process the input data and emit
〈key, value〉 (KV) pairs. In the shuffle phase, the KV pairs are communicated and then they are sorted10

according to keys, thus grouping the values that belong to the same key. The reduce tasks then process the

IThis work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Grant
EEEAG-115E212 and ICT COST Action IC1406 (cHiPSet).

∗Corresponding author
Email addresses: reha@cs.bilkent.edu.tr (Oguz Selvitopi), gunduz.demirci@cs.bilkent.edu.tr (Gunduz Vehbi

Demirci), ataturk@bu.edu (Ata Turk), aykanat@cs.bilkent.edu.tr (Cevdet Aykanat)

Preprint submitted to Journal of Future Generation Computer Systems July 23, 2018



Download English Version:

https://daneshyari.com/en/article/6872766

Download Persian Version:

https://daneshyari.com/article/6872766

Daneshyari.com

https://daneshyari.com/en/article/6872766
https://daneshyari.com/article/6872766
https://daneshyari.com

