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h i g h l i g h t s

• A DTN powered by reinforcement learning to achieve self-optimization.
• A knowledge engine that can identify optimal parameter values for a DTN.
• A knowledge engine guides a DTN to achieve stabler and better performance.
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a b s t r a c t

Scientific computing systems are becoming significantly more complex, with distributed teams and
complexworkflows spanning resources from telescopes and light sources to fast networks and Internet of
Things sensor systems. In such settings, no single, centralized administrative team and software stack can
coordinate and manage all resources used by a single application. Indeed, we have reached a critical limit
in manageability using current human-in-the-loop techniques. We therefore argue that resources must
begin to respond automatically, adapting and tuning their behavior in response to observed properties
of scientific workflows. Over time, machine learning methods can be used to identify effective strategies
for autonomic, goal-driven management behaviors that can be applied end-to-end across the scientific
computing landscape. Using the data transfer nodes that are widely deployed in modern research
networks as an example, we explore the architecture, methods, and algorithms needed for a smart data
transfer node to support future scientific computing systems that self-tune and self-manage.

Published by Elsevier B.V.

1. Introduction

Scientific computing systems are becoming significantly more
complex and have reached a critical limit in manageability using
current human-in-the-loop techniques. To address this situation,
we need to devise autonomic, goal-driven management actions,
based on machine learning, applied end-to-end across the scien-
tific computing landscape. The high-performance computing cen-
ter was previously the nexus of the scientific computing universe,
both administratively and computationally. Users brought their
codes and their data to computing facilities, and the operational
teams managing the systems carefully configured and monitored
systems to achieve the required uptimes and queue wait times.
As science workflows get complex, spanning distributed resources
and involving a distributed team of researchers, no single, central-
ized administrative team and software stack can coordinate and
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manage all the resources. Thus, smart systems that achieve self-
configuration, self-optimization, self-healing, and self-protection
have garnered the attention of researchers in both academia and
industry [1–5].

Data transfer nodes (DTNs) [6] are compute systems dedicated
for data transfers in distributed science environments. In previous
work [7,8], we determined via the analysis ofmillions of Globus [9]
data transfers involving thousands of DTNs that DTN performance
has a nonlinear relationship with load. Aggregate DTN throughput
first increases with transfer load but, after a threshold, decreases
because of overload (see Fig. 1). A DTN thus has an optimal op-
erating point. As instantaneous DTN load is determined by the
characteristics of the transfers that are currently running, which
are in turn determined by the parameters of those transfers, the
optimal operating point cannot easily be determined analytically.

An ideal scheduling algorithm will ensure that a given DTN
always works in its optimal operating point. since resources used
to transfer data over wide area network – for example, networks
and storage systems at the source and destination endpoints are
sharedwith other applications – a static policy is powerless to deal
with these dynamics. Analyticalmethods are inadequate in captur-
ing the collective impact of application parameters because these
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Fig. 1. Aggregate incoming transfer rate vs. total concurrency (i.e., instantaneous number of GridFTP server instances) at two heavily used endpoints, withWeibull curve [10]
fitted.
Source: [7].

parameters are often categorical and their impact on performance
and power usage is opaque to such methods [11]. We report here
on a preliminary study in which we apply a deep reinforcement
machine learning-based knowledge engine to power a DTN with
smartness in order to achieve self-awareness, self-configuration,
and self-optimization. Our goal is to make the DTN always run at
its optimal operating point (or at least avoid overloading) if there
are sufficient transfer tasks. The key difference between this paper
and other studies [12,13] on optimizing wide-area data transfer
performance is thatwe try tomaximize the aggregated throughput
of a DTN, whereas others try to optimize the throughput of a given
transfer.

The rest of the paper is organized as follows. In Section 2 we
present the architecture of a smart cyberinfrastructure in which
each subsystem has the ability to act autonomously. In Section 3
we detail the design and implementation of a smart DTN. Our ex-
periment results are discussed in Section 4, where we present two
experiments to show the effectiveness of the knowledge engine. In
Section 5 we review related work, and in Section 6 we summarize
our conclusions and briefly discuss future work.

2. Motivation

Extraordinary advances in computing, communication
networks, and information technologies have produced an explo-
sive growth of highly interconnected systems, which are increas-
ingly becoming complex, dynamic, heterogeneous, labor inten-
sive, and challenging to operate and manage with existing ap-
proaches [14]. For large organizations such as DOE’s science com-
munity, with thousands of geographically interconnected systems,
traditional distributed systems operation and management based
on static behaviors, interactions, and configuration are proving
to be inadequate. We define a system architecture in which, as
shown in Fig. 2, each edge resource has its own knowledge engine
(KE). This component acts as the ‘‘brain’’ of an edge resource,
generating control commands based on the current system state as
determined frommonitoring data and on learned knowledge of the
relationship between actions and cost/benefits. Thus, the KE has
three key components: (1) input features that reflect the current
state of the physical system, (2) output control commands that
steer the physical system to operate optimally for current tasks,
and (3) machine learning models that capture and optimize the
relationship between input and output.

Fig. 2 shows an architecture of science autonomous infrastruc-
ture, which consists of five layers: fabric, perception, processing,
collective, and application. The fabric layer consists of the re-
sources or things in the smart science ecosystem: for example,
computational resources, storage systems, network resources, and
instruments. The perception layer gathers static and dynamic

information about the resources to discover the state, structure and
capabilities as well as provides mechanism to steer (or perform
actions on) the resources. The processing layer stores, analyzes,
and processes data that comes from the perception layer. It can
use learning algorithms to detect patterns, find anomalies, predict
performance and make proactive decisions. The collective layer
defines the necessary communication and authentication proto-
cols andmechanisms for the exchange of data among the KEs in the
processing layer of different resources in the science ecosystem.
The application layer comprises of the user applications within
the smart science ecosystem.

As one can see, each component in Fig. 2 is powered by a KE
capable of sensing information from the environment and/or other
components and optimizing itself by learning from its history.
In the current era of distributed and data-intensive science, data
movement is a critical aspect. Thus, in this work we focus on
designing a smart data transfer node, a first step toward designing
a smart distributed science ecosystem.

Here, a DTN is typically a PC-based Linux server, built with
high-quality components and configured specifically for wide-
area data transfer. It is a key component in distributed science
environments [15], and its performance has direct influence on
the productivity of the whole ecosystem. A DTN typically mounts
the parallel file system that serves the compute cluster and is
connected to a high-speed wide area network. For a given transfer,
a DTN either pulls data from the storage and sends the data over
its network interface card or receives data from its network card
and writes the data to its storage system. Heavily used DTNs, such
as those at national supercomputer centers, serve as both source
and destination for multiple concurrent transfers [16]. Based on
our extensive study of millions of Globus transfer logs [7,17], we
find a big space for improvement in data transfer performance by
optimizing DTN behavior. Self-configuration and self-optimization
are two of the key featureswe achieve in this paper. Basically, these
features mean that the DTN is self-aware and knows how to steer
itself. The following are a few examples of ways in which a smart
DTN can adapt its behavior to optimize desired outcomes.

• Network packet pacing. Packet pacing can improve perfor-
mance [18], but its value depends on the characteristics of
the destination endpoint. Typically, it is desirable onlywhen
transferring data from a higher bandwidth endpoint to a
lower bandwidth endpoint. Since a DTN may transfer data
to endpoints of different types (e.g., other DTNs, desktops,
laptops), a smart DTN should apply pacing differentially to
different edges (source to destination endpoint pair) based
on destination capabilities.
• File transfer order. Overall performance can be improved

by rearranging the order inwhich files are transferred based
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