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h i g h l i g h t s

• An optimizer Adacom is proposed based on an adaptive control system and momentum.
• Adacom is designed to alleviate oscillation and decrease the curvature.
• Adacom introduce reference model interacted with momentum to generate the update.
• The method can be used for optimizations in Autonomous Cloud and pervasive computing.
• Theoretical demonstration and evaluations prove its feasibility among the methods.
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a b s t r a c t

Many issues in the cloud can be transformed into optimization problems, where data is of high dimension
and randomness. Thus, stochastic optimizing is a key to Autonomous Cloud. And one of the most
significant discussions in this field is how to adapt the learning rate and convergent path dynamically. This
paper proposes a gradient-based algorithm called Adacom, that is based on an adaptive control system
and momentum. Critically inheriting the previous studies, a reference model is introduced to generate
the update. The method reduces noise and decides on paths with less oscillation, while maintaining the
accumulated learning rate. Due to systemdesign properties, themethod requires fewer hyper-parameters
for tuning.We state the prospect of Adacom as a general optimizer in Autonomous Cloud, and explore the
potential of Adacom for pervasive computing by the assumption of transition data. Then we demonstrate
the convergence of Adacom theoretically. The evaluations over the simulated transition data prove the
feasibility and superiority of Adacom with other gradient-based methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The data in the cloud is varied, multidimensional and unstruc-
tured [1]. At present, the ecosystem of cloud computing is develop-
ing to multi-level, and the resource allocation of distributed cloud
computing is changing strategically with the demand of industry
and client [2]. The multiplication and mobility of devices that
users access to the cloud have impacted the traditional network
topology [3]. The traditional allocation response algorithm cannot
cope with the mobile scene, and the computing originally in cloud
servers has been gradually marginalized. Thus, the intelligent
cloud response issue of edge devices needs to be addressed [4].
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In many aspects, the client input and the operation have incon-
sistency in the representation of data [5]. In cloud environments,
the realization of unified data platform will be the foundation of
pervasive computing. In the future, with the trend of pervasive
computing, the ability of cloud computing will be, to some extent,
limited by general optimizers.

Demonstrated as a basic and efficient method for stochastic op-
timization, stochastic gradient descent has been widely applied as
an optimizer in many scientific fields. On the one hand, many ma-
chine learning models can be ultimately projected to some objec-
tive functionwith the intent of searching localminimawith respect
to the parameters [6]. It has been argued that quasi-Newtonian
methods work well in searching for the extrema, when the first
and second derivatives are available in the domain of a small-
scaled optimization. However, as the data size gets larger or the
function becomes discrete, stochastic gradient descent performs
efficiently and ideally. On the other hand, taking cyber security into
consideration, the application of gradient optimizers can reduce
the risk of leakage of raw information during transmission and
improve data confidentiality [7].
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Stochastic gradient descent has been operating as by far the
most common core optimization strategy in deep learning [8]. It is
worth mentioning that the extension of its application is currently
both explosive and inspiring. For instance, in neural computa-
tion, data flow between different neuron levels has been shown
to be achieved through the algorithm [9]. Additionally, we can
utilize stochastic gradient descent to boost the classification effects
on statistical methods like the naive Bayes classifier [10]. In the
area of deep learning, dropout regularization helps to prevent the
emergence of overfitting for generalization with noisy data [11].
The recent advanced Deep Residual Network outperforms other
Convolutional Neural Networks (CNN) in certain jobs [12]. It is
widely accepted that almost all the machine learning frameworks
mentioned above call for the stochastic gradient optimizer for
optimization. A dedicated deep learning model can help adjust
the parameters of a model in the cloud. For example, in [13],
researchers use deep recurrent neural network to detect malware
software. This paper seeks to introduce a novel algorithm to ad-
dress these issues, which can dynamically adapt to the iterative
gradient with the lower-order momentum parameter.

1.1. Motivation and contributions

Most gradient-based methods have natural limitations: for ex-
ample, one major problem with the batch gradient descent is that
the learning rate is fixed andhard to estimate in advance.When the
parameter configuration is close to the localminima, it suffers from
oscillation around the destination. Since random sampling leads to
the combination of gradient and noise in the stochastic process, the
convergent path appears dentate and serrated. Researchers have
argued that the matter can be settled by importing a momentum
algorithm from Physics. The basic form of a momentum algorithm
enables the gradient to be accumulated and does, to some extent,
fix the problem [14]. In actual fact, instead of a swift convergence,
the speedup accounts for the oscillation or divergence, making the
algorithm constrained in a technical sense.

Along with the advancement of deep learning, a series of algo-
rithms have been developed that can automatically adapt to the
learning rate, namely Adagrad [15], RMSProp [16], Adadelta [17],
Adam [18], and so on. These methods are technically feasible,
although some have one hyper-parameter that needs to be set
manually, while others require tuning over two hyper-parameters.
When tuning over parameters,we are unable to estimate the deter-
minant effect towards the learning rate through direct calculation,
as some methods are too robust to provide promising feedback
over coefficients.

Althoughmethods like Adam realize a stable annealing learning
rate with the hyper-parameters, we discovered one drawback.
The hitch is that, owing to the initial bias, the convergent path
corresponds to the curve, which has large space curvature in all
dimensions around the local extrema and thus costs tremendous
time before a complete convergence.We believe that one property
of perfect convergent paths is the least average space curvature.
It can be proved that the shortest path is the route with the least
curvature, and hence the consequence is a decline in processing
time.

In this paper, we present an adaptive control momentum
gradient-based algorithm called Adacom. The method is based on
a first-order gradient that adapts to an adequate element wise
learning rate at each iteration. This work attempts to damp the
oscillation and obtain a fairly rapid learning rate using the inter-
action between the natural gradient and momentum. The paper
contributes in the following ways:

(1) We propose Adacom for a smooth path and adaptive learn-
ing rates in stochastic optimization with only one hyper-
parameter.

(2) We restate the focus of Autonomous Cloud in optimization
models and point out Adacom as a general optimizer.

(3) We analyze the convergence of Adacom in theory and ob-
tained the convergence rate.

(4) We assess the performance of Adacom, which is used to
ascertain the effect as a general optimizer in the cloud.

1.2. Organization

The rest of the paper is organized as follows. In Section 2,
some relevant gradient-based stochastic optimization algorithms
are reviewed. In Section 3, Adacom is introduced at length in its dif-
ferent design aspects to reveal our original ideas; we also present
a graph associated with the theoretical analysis. In Section 4, the
vast scenarios in the cloud for implementations of Adacom have
been investigated. In Section 5, the convergence of the algorithm
is proved analytically based on a convex assumption. In Section 6,
evaluations are conducted to illustrate the effectiveness of the
algorithm empirically, and experimental results are presented.
Finally, in Section 7, conclusions and future work are discussed.

2. Related work

Like other related algorithms, Adacom is a modification orig-
inating from natural gradient descent. In this section, we will de-
scribe the different updating patterns of each of the other prevalent
algorithms [19].

A. Stochastic gradient descent with momentum
The momentum method inherits the momentum con-

cept from Physics, with the intent of speeding up the learn-
ing process [20]. And it is especially employed on functions
with stochastic noise or an ill-conditioned Hessian matrix.
It accumulates the exponential moving averages. Given the
gradient g of an objective function f (θ ), the momentum is
given by:

vt = αvt−1 + gt (1)

where α controls the decay. Theoretical and experimental
demonstrations claimed that asymptotic local rate of con-
vergence will be lost [21]. But Ilya et al. argued in [22]
that the asymptotic convergence rate derived frommomen-
tum will improve the performance of deep network, even
dominate the whole learning. Momentum and its modifi-
cations [20] reduce stochastic noise by average, but studies
tend to overlook the fact that momentum cannot adjust in
term of small gradients.

B. Adagrad
Duchi et al. formalized Adagrad (short for Adaptive Sub-

gradient Methods) [15]. The method creates a bound that
continually grows by a product gradient matrix, and utilizes
the bound as a denominator to approximate the second
order information [23], which is given by:

∆θ = −
ϵ

δ +
√
r
g, (2)

Although it performs well for sparse gradients over con-
vex objective functions, because of the initial accumulating
of larger gradients, learning rates decrease too fast [24].
These signals confuse the algorithm that cannot converge
to the extrema. Nishant et al. also argued that Adagrad
lacks the attention to correlations between components of
gradients [25].
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