
Future Generation Computer Systems 89 (2018) 563–574

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Why wait? Let us start computing while the data is still on the wire✩

Shilpi Bhattacharyya a,*, Dimitrios Katramatos b, Shinjae Yoo b

a Stony Brook University, Stony Brook, NY 11790, USA
b Brookhaven National Laboratory, Upton, NY 11973, USA

h i g h l i g h t s

• A framework namely Analysis on Wire (AoW) capable of computing on the wire.
• AoW can help save resources in the data centers and/or cloud.
• AoW can help in making earlier decisions in relevant scenarios as trading.
• Computations include analysis, visualization, pattern recognition, and forecasting.
• We present three examples - forex trading, media publishing, and monitoring sensors.
• AoW can be deployed anywhere in the network between the source and the destination.

a r t i c l e i n f o

Article history:
Received 1 February 2018
Received in revised form 9 June 2018
Accepted 14 July 2018
Available online 17 July 2018

Keywords:
Software defined networking
Service function chaining
Big Data
Streaming data
Machine learning in networks
Pattern recognition
Analysis on wire
Intelligent networks
Internet of Things (IoT)

a b s t r a c t

In this era of Big Data, computing useful and timely information from data is becoming increasingly
complicated, particularly due to the ever increasing volumes of data that need to travel over the network
to data centers to be stored and processed, all highly expensive operations in the long haul. This is a strong
motivation to explore how to perform computing and analysis of data ‘‘on the wire’’, i.e., while the data is
still in transit. The nature of these computations include analysis, visualization, pattern recognition, and
prediction on the streaming data. In this paper we present the idea of a framework capable of analyzing
data in transit based on the principles of a service function chaining architecture. This framework can be
deployed at any practical location within the network where computation on data flows is desirable. We
further describe an all-virtual implementation of the framework as a worst-case scenario and present an
early investigation of its capabilities with three examples — pattern recognition and data visualization on
streaming Forex data, targeted advertising from clickstream data, and processing ofmonitoring data from
solar sensors for maintenance decisions. Our results indicate that performing computations on live data
flows to provide immediate perspective on the data is possible and attractive, but also that performance
heavily depends on the amount and capabilities of the dedicated resources.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the Internet revolution, globalization, and digitization of
everything and anything possible, there is a tremendous increase
in the data volumes moving through the network e.g., an institute
like CERN produced 73 PB of data in the year 2016 running their
Large Hadron Collider [1]. Tomake all this colossal amounts of data
useful, we perform custom computations on them. Conventionally,
when data sent from one end is received at the other end — any
kind of computation is performed on it at specific data centers or by

✩ This project has been funded by BrookhavenNational Laboratory, USA (contract
number: DE-SC0012704).

* Corresponding author.
E-mail addresses: shbhattachar@cs.stonybrook.edu (S. Bhattacharyya),

dkat@bnl.gov (D. Katramatos), sjyoo@bnl.gov (S. Yoo).

utilizing newer computing paradigms as cloud, edge andmist com-
puting to quench the computational needs. In cloud computing,
such as in Amazon AWS [2], computation and storage is performed
in virtual data centers that are put together dynamically. It is
a popular computing paradigm which works well on streaming
data and performs all kinds of computations under the flavors
of SaaS (Software as a service), PaaS (Platform as a service) and
IaaS (Infrastructure as a service). Nevertheless, computation (and
storage) still takes place in data centers which can be far away
from the data sources and data is subjected to significant latencies,
overheads, and delays before any meaningful computation can be
performed on it. Edge computing [3–5] facilitates the operation of
compute, storage, and networking services between end devices
and data centers; computation is performed at the physical ‘‘edge’’
of the network. This paradigm is also called ‘‘fog computing’’. Mist
computing [6,7] is the latest paradigm involving computing in the

https://doi.org/10.1016/j.future.2018.07.024
0167-739X/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

https://doi.org/10.1016/j.future.2018.07.024
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.07.024&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:shbhattachar@cs.stonybrook.edu
mailto:dkat@bnl.gov
mailto:sjyoo@bnl.gov
https://doi.org/10.1016/j.future.2018.07.024
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


564 S. Bhattacharyya et al. / Future Generation Computer Systems 89 (2018) 563–574

very end devices found at the edge of the network to assist in the
motion of data towards the fog and the cloud. All these paradigms
are intimately linked to the Internet of Things (IoT) [8] with the
huge numbers of data sources and destinations at the extremes
of the network and were conceived to facilitate the operation and
reduce the volume of traffic through the network that could even-
tually ‘‘drown’’ data centers with data tsunamis. Here, however,
we suggest that it is feasible to start computations on the data
as soon as it arrives at a specific point on the wire by deploying
the AoW framework there and this point can be at the edge of
the network, close to the data center, or anywhere applicable in
between depending on problem scope and data availability. We
believe this framework can enable researchers to go beyond the IoT
horizon because of its inherent flexibility to be deployed anywhere
between the source and the destination.

We follow the Service Function Chaining (SFC) architecture [9]
to build theAoW framework. SFC emphasizes that the functionality
of some legacy hardware devices can be implemented with the
concept of Software Defined Networking (SDN). To the best of our
knowledge, throughout the literature the emphasis of SDNs has
always been towards a better network management [10,11]. But,
we present a high performance computing perspective for SDNs
here to enable ‘‘on the wire’’ computation. We present our idea
with examples to show how we can compute on streaming data
to inspect, analyze, forecast and recognize specific patterns in the
data.

We started theAoW framework as anuncomplicated setup [12],
where we send a simple string as ‘‘hello world’’ from one end to
the other, with and without the SFC architecture, and compute
the overhead of sending it through the chain, which becomes
almost negligible with increasingly more data being sent. That
implementation deployed seven virtualmachines, configuredwith
the Vagrant [13] environment, which made the framework quite
slow for Big Data.

The current implementation is based on the Docker [14] en-
vironment, which is relatively lighter and faster. We design a
SDN framework to do computations on the streaming data on
the network. We run algorithms on this framework to visualize,
forecast and analyze the incoming data into the network to infer
useful information. This could help us not only in saving resources
in the data centers or alternatively any kind of cloud storage, but
additionally in early decision making since data is processed in
flight instead of having to wait for its arrival and accumulation at
a data center before processing can begin on it. With the help of
AoW, we can even prevent or be prepared for impending disasters
such as device breakup; we demonstrate this for solar sensors.

We present the functionality and ‘‘on the wire’’ compute po-
tential of the AoW framework with three examples. We run a
pattern recognition algorithm on Forex data to plan a better trade
investment. We analyze clickstream data frommultiple streaming
websites to identify user buying patterns. And, finally, we process
a streaming data from twenty three solar sensors in the AoW
framework to detect which of them is down and possibly schedule
maintenance, requisite repairs or replacement for them.

The paper is organized as follows. We discuss the conceptual
design of the AoW framework in Section 2.1. The implementation
details of the preliminary framework is discussed in Section 2.2,
describing the functionality and capabilities of all of its compo-
nents. The operation of the framework is described in Section 2.3.
We start discussing various algorithms which we are executing
on the AoW framework under three subsections of Section 3. The
observations and the results of the experiments are presented in
Section 4. We highlight the related research work in this area and
some potential use cases in Sections 5 and 6 respectively. We an-
alyze the trade-off and limitations of the current implementation
in Section 7. Finally, we conclude in Section 8, reflecting the future
scope of the work as well as our current progress therein.

2. Analysis on Wire (AoW) Framework

2.1. Conceptual design

The AoW framework is designed on the principles of Software
Defined Networking [10] where we separate the intelligence (con-
trol plane) of the network from its forwarding capability (data
plane). The conceptual design of theAoW framework can be seen in
Fig. 1 and as depicted, we envisage deployment of AoW-enhanced
nodes to multiple locations in a network, spanning multiple do-
mains. These nodes can be coordinated through a layer of middle-
ware to form a distributed computer that can be used to process
streaming data originating at multiple geographically distributed
sources. The distributed aspect of AoW is beyond the scope of this
paper as here we focus on the concept of a single node.

2.2. Preliminary implementation

The preliminary implementation as depicted in Fig. 2, is essen-
tially a Docker-based service function chaining architecture with
an OpenDaylight (ODL) [15] controller. We started developing this
framework on top of the OpenDaylight Service Function Chaining
demo [16]. The controller is a Vagrant virtual machine (VM), which
has other nodes as docker containers. All the docker containers are
Open vSwitches [17]. We feed the controller with the necessary
path information for our framework to perform a desired compu-
tation on the streaming data by passing json payloads through a
Representational State Transfer (REST) Application Programming
Interface (API). The controller, in turn, prepares all other nodes for
computation. The controller is also responsible for monitoring the
good operation of all other nodes in the framework. The modules
in the framework are described as follows.

Traffic Checker - An Open vSwitch, which decides whether the
incoming data packet is destined to enter the chain framework.
It makes decisions according to the rules created in its flow table
as shown in Fig. 4. The rules have been created in the traffic
checker by the controller when we feed json payloads through
REST API for the required configuration of the framework, once
the controller on Vagrant VM starts. Rules are open ended and
can be configured based on the demands of the data computing
design framework. For our experiments, we have rules based on
acceptable ip addresses and packet type. Once a data packet is
accepted into the AoW framework at the traffic checker, the data
packet needs to move further towards its destination. The traffic
checker encapsulates the incoming data packets with Network
Service Headers (NSH) [18] and transports them over User Data-
gram Protocol (UDP) [19] for further movement in the network.
We discussmore about NSH towards the end of this section. Traffic
Checker is used interchangeably with Checker hereafter.

Forwarder - Once, a packet has been classified to enter the AoW
framework, it means it has been encapsulated with NSH, which
guides it further in the network. It reaches a Forwarder now, with
a specific Computing Unit (CU) attached to it. The Forwarder redi-
rects the packet to the CU, which parses the packets to extract the
payload and executes the desired algorithm on the data payload to
do any kind of computation and/or analysis.

Computing unit (CU) - This is our data computing unit in the chain.
It has two modules: (a) (Streaming) Data processor module -
which extracts the payload from the incoming data packets, and
converts them in a format which the corresponding Algorithm
module can accept as an input, (b) Algorithm module - which is
the custom algorithm module, wherein a plethora of algorithms
such as pattern recognition, forecasting, and in general any form of
streaming computation can be executed.



Download English Version:

https://daneshyari.com/en/article/6872844

Download Persian Version:

https://daneshyari.com/article/6872844

Daneshyari.com

https://daneshyari.com/en/article/6872844
https://daneshyari.com/article/6872844
https://daneshyari.com

