
Future Generation Computer Systems 88 (2018) 297–308

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Viper: A module for communication-layer determinism and scaling in
low-latency stream processing✩

Ivan Walulya *, Dimitris Palyvos-Giannas, Yiannis Nikolakopoulos, Vincenzo Gulisano,
Marina Papatriantafilou, Philippas Tsigas
Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 17 November 2017
Received in revised form 21 March 2018
Accepted 27 May 2018

Keywords:
Data streaming
Determinism
Low-latency
Shared-nothing and shared-memory
parallelism

Stream processing engines
Data parallelism

a b s t r a c t

Stream Processing Engines (SPEs) process continuous streams of data and produce results in a real-
time fashion, typically through one-at-a-time tuple analysis. In Fog architectures, the limited resources
of the edge devices, enabling close-to-the-source scalable analysis, demand for computationally- and
energy-efficient SPEs. When looking into the vital SPE processing properties required from applications,
determinism, which ensures consistent results independently of the way the analysis is parallelized, has
a strong position besides scalability in throughput and low processing latency. SPEs scale in throughput
and latency by relying on shared-nothing parallelism, deployingmultiple copies of each operator towhich
tuples are distributed based on its semantics. The coordination of the asynchronous analysis of parallel
operators required to enforce determinism is then carried out by additional dedicated sorting operators.
To prevent this costly coordination from becoming a bottleneck, we introduce the Viper communication
module,which canbe integrated in the SPE communication layer andboost the coordination of theparallel
threads analyzing the data. Using Apache Storm and data extracted from the Linear Road benchmark and
a real-world smart grid system,we showbenefits in the throughput, latency and energy efficiency coming
from the utilization of the Viper module.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Data streaming emerged to meet the stringent demands of
massive on-line data analysis in various contexts, such as cloud
and edge-computing architectures. Stream Processing Engines
(SPEs) allow programmers to formulate continuous queries, de-
fined as Directed Acyclic Graphs of interconnected operators, to
process incoming data producing results in a continuous fashion;
e.g., StreamCloud [1], Apache Storm and Flink [2,3] and Saber [4].

In upcoming IoT-based cyber–physical systems, edge and fog
devices can enable close-to-the-source analysis minimizing la-
tency for time-critical applications and adding high cumulative
computational power to the resources available in existing data
centers. To do so, nevertheless, the limited resources of individual
edge and fog devices demand for computationally and energy
efficient SPEs.

✩ Preliminary results have been presented at the International Workshop on
Autonomic Solutions for Parallel and Distributed Data Stream Processing (Auto-
DaSP 2017).

* Corresponding author.
E-mail address: ivanw@chalmers.se (I. Walulya).
URL: https://www.chalmers.se/en/staff/Pages/Ivan-Walulya-.aspx (I. Walulya).

Parallelism in SPEs is key for achieving high-throughput and
low latency processing for large data volumes in evolving cyber–
physical infrastructures [5]. The importance of scaling in through-
put while keeping low-latency processing in SPEs is clearly under-
stood, it has also been manifested by work in [6,7,1,8,9]. Pipeline
and task parallelism are easily extracted from Directed Acyclic
Graphs with operators or tasks assigned to different processing
units. However, with data parallelization or fission [10–14], care-
ful orchestration of operators’ execution is required to preserve
determinism, which is required to ensure consistent results inde-
pendently of the way in which the analysis is parallelized. Data
parallelism involves replicating instances of operators, that work
concurrently on data streams. An operator’s parallel implementa-
tion is deterministic if, given the same sequences of input tuples,
the same sequence of output tuples is produced independently
of the tuples’ inter-arrival times or the parallelism degree of the
operator [15,16,12,13].

Previous attempts to guarantee determinism in SPEs under
execution of parallel instances of an operator rely on dedicated
merge-sorting operators. These operators are either added to con-
tinuous queries by query compilers [1,12,13] or left for develop-
ers to place within their streaming applications in SPEs, such as
Apache Storm [2]. This type of approach is henceforth referred

https://doi.org/10.1016/j.future.2018.05.067
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.05.067
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.05.067&domain=pdf
mailto:ivanw@chalmers.se
https://www.chalmers.se/en/staff/Pages/Ivan-Walulya-.aspx
https://doi.org/10.1016/j.future.2018.05.067


298 I. Walulya et al. / Future Generation Computer Systems 88 (2018) 297–308

to as operator-layer determinism in the paper. Minimizing the
computational overhead introduced by such dedicated operators is
challenging, especially for one-at-a-time, fine-grained low latency
tuple processing.

We address the issue of guaranteeing determinism in a mod-
ular, automated and efficient way. We start by observing that,
commonly in SPEs, each physical stream is piped from a producer
(e.g., an incoming link from a sensor, or an outgoing link of an
operator instance) to its consumer (another operator instance),
without coordination or sharing state. Efficient synchronization
over sharedmemory achieved transparently, is challenging but in-
tegral to providing determinism to application developers without
requiring the latter to develop custom solutions.

Gulisano et al. [15] proposed ScaleGate, a data structure which
is customized to guarantee determinism, and which has been used
for aggregate and join operators in shared memory systems. In
this paper we build upon ScaleGate and provide the following
contributions: (i) We modularly shift a procedure of guaranteeing
determinism, from the operator-layer to the communication layer
of an SPE, thus relieving application developers from the burden
of devising application-dependent methods. (ii) We design and
implement a module, called Viper, which can be transparently
integrated in an SPE communication layer. Building on ScaleGate,
we lift the data-structure’s context into the communication layer
of an SPE architecture. From ScaleGate to Viper, the novelty is
on the transparency provided to the application developer in ef-
ficiently guaranteeing determinism. (iii) We integrate Viper in
Apache Storm (as a representative example of an SPE) and demon-
strate the idea of modularly providing determinism, while caring
for efficiency in parallelism, through an experimental evaluation of
the proposed methodology. For the evaluation, we chose stream-
ing operators of the Linear Road benchmark [17] and a use-case
from a real-world smart grid system as representative examples of
where stream processing in fog and edge architectures can be far
better than processing in the cloud, as also discussed in [18]. The
study clearly shows the throughput, latency and energy-efficiency
benefits induced.

In the paper, we present preliminary concepts in Section 2; we
describe our proposal for enforcing determinism at the communi-
cation layer (rather than the operator layer) of an SPE and discuss
the advantages of the former as we introduce the Viper module,
in Section 3. We show the use of Viper, as an SPE module, by
using Apache Storm as a use case in Section 4.1 and we evaluate
the benefits of Viper in Section 5. We discuss related work and
conclude in Sections 6 and 7, respectively.

2. Systemmodel

This section introduces data streaming, parallel and determin-
istic execution of continuous queries and the performance metrics
to assess the results.

2.1. Data streaming

A stream is defined as an unbounded sequence of tuples t0, t1,
. . . sharing the same schema ⟨ts, A1, . . . , An⟩. Given a tuple
t , t.ts represents its creation timestamp while A1, . . . , An are
application-related attributes.

Continuous queries (henceforth simply queries) are defined as
DAGs of operators that consume and produce tuples. Operators are
distinguished into stateless or stateful, depending on whether they
keep any state that evolves with the tuples being processed. State-
less operators includeMap (to alter the schema of tuples) and Filter
(to discard or route tuples). Stateful operators include Aggregate
(to compute aggregation functions such as sum or average over
tuples) and Join (to match tuples coming from multiple streams).

Due to the unbounded nature of streams, stateful operations are
computed over sliding windows, which can be time-based or tuple-
based and are defined by parameters size and advance. Follow-
ing the data streaming literature (e.g., [19,1,20]), we assume that
streams fed by each data source contain timestamp-sorted tuples.
If this is not the case, sorting mechanisms such as [21] can be
leveraged.

The performance of an operator depends on its cost and selectiv-
ity. The cost represents the average timeneeded to process an input
tuple and (optionally) produce any resulting output tuple. It is thus
coupledwith the selectivity, which represents the average number
of output tuples produced upon the processing of one input tuple
(e.g., an operator with selectivity 0.5 will produce, on average, one
output tuple each time it processes two input tuples).

To illustrate the aforementioned terms and notions, Fig. 1A
presents a sample streaming application from the Linear Road
benchmark [17],1 where position reports are forwarded by ve-
hicles traveling on a highway. The application performs three
updates for each incoming report. First, it checks if the report refers
to a vehicle entering, leaving or changing segment. It then updates
the number of vehicles and the tolls of the involved segments.
Finally, it notifies the interested vehicles.

Fig. 1B presents an example centralized query that implements
the application’s semantics through basic streaming operators. The
schema of each stream is presented on top of the operators. A
first Aggregate A1 enriches each position report with the previous
segment observed for the same vehicle. Subsequently, a Filter F
discards reports referring to vehicles that have not changed seg-
ment. Aggregate A2 updates the count for each segment and Map
Mcomputes the toll for a segment, based on the number of vehicles
in it, and notifies vehicles.

2.2. Parallelism, determinism and syntactic transparency

A parallel version of a centralized query (such as the sequential
one in the example of Fig. 1B) is desirable because of two reasons:
(i) to cope with the large and fluctuating volume of data (in this
example the position reports observed in a highway); (ii) to possi-
bly deploy the analysis over a distributed network of nodes, each
responsible for e.g. a subset of segments. The latter would avoid
centralized data gathering and processing, which indeedmight not
be feasible because of too high data transmission latency, infras-
tructure limitations or privacy legislation, among other reasons.

For a parallel query, deterministic execution should ensure that
the results given by it are exactly the same that would be given
by its centralized counterpart. This is equivalent to the notion of
external determinism (or determinacy), as described in e.g., [22,23].
As shown in [23], processing systems that are described as directed
graphs of operations guarantee this property on the global level,
if they satisfy determinacy (i) on the operation level and (ii) in
the data flows between communicating operations. This implies
that if we have a parallel implementation of the query using de-
terministic processing components and deterministic flow of the
results to downstream operators, then the issue is addressed. As
argued in [24,1], in the context of query processing in SPEs, for
having global determinism it is sufficient to enforce that (i) split-
ting streams to downstream operator is done according to the
semantics of those operators (e.g. for aggregates, tuples with the
same group-by key and same timestamp are routed along the same
outgoing link); and (ii) when merging streams, attention is paid to
order the tuples, so that they provide a single timestamp sorted
stream. For this reason, special m erge-sorting (M) operators are
defined before each operator instance fed by a parallel upstream

1 Section 5 contains a detailed description of the benchmark.



Download English Version:

https://daneshyari.com/en/article/6872863

Download Persian Version:

https://daneshyari.com/article/6872863

Daneshyari.com

https://daneshyari.com/en/article/6872863
https://daneshyari.com/article/6872863
https://daneshyari.com

