
Future Generation Computer Systems 89 (2018) 698–712

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A highly cost-effective task scheduling strategy for very large graph
computation
Yongli Cheng a,b,*, Fang Wang b, Hong Jiang c, Yu Hua b, Dan Feng b, Yunxiang Wu b,
Tingwei Zhu b, Wenzhong Guo a,d,e

a College of Mathematics and Computer Science, FuZhou University, China
b School of Computer, Huazhong University of Science and Technology, WuHan, China
c Department of Computer Science & Engineering, University of Texas at Arlington, USA
d Key Lab of Spatial Data Mining & Info. Sharing, Min. of Education, Fuzhou, China
e Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou, China

h i g h l i g h t s

• The reduced the number of supersteps due to the high convergence speed.
• The eliminated synchronization overheads due to the pipeline-based task scheduling.
• The high flexibility due to the network ecosystem friendliness.

a r t i c l e i n f o

Article history:
Received 18 October 2017
Received in revised form 19 June 2018
Accepted 10 July 2018
Available online 18 July 2018

Keywords:
Graph computation
Cost-effectiveness
Very large graphs

a b s t r a c t

Existing distributed graph-processing frameworks, e.g., Pregel, GPS and Giraph, handle large-scale graphs
in thememory of clusters built of commodity compute nodes for better scalability andperformance.While
capable of scaling out according to the size of graphs up to thousands of compute nodes, for graphs
beyond a certain size, these frameworks would usually require investments of machines that are either
beyond the financial capability of or unprofitable formost small andmedium-sized organizations,making
the deployment of their large-scale graph-computing jobs difficult if not impossible. At the other end
of the spectrum of graph-processing frameworks research, the single-node disk-based graph-computing
frameworks, such as GraphChi and XStream, handle large-scale graphs on just one commodity computer,
leading to high efficiency in the use of hardware but at the cost of low user performance and limited
scalability. Motivated by this dichotomy, in this paper we propose a pipeline-based task scheduling
strategy with high cost-effectiveness. We use this scheduling strategy to design and implement a
distributed disk-based graph-processing framework, called DD-Graph, that can process very large graphs
with trillions of edges on a small cluster while achieving the high performance of existing distributed
in-memory graph-processing frameworks. The evaluation of DD-Graph prototype, driven by very large
graph datasets, shows that it saves 73% of GPS’ hardware costs while running 1.34x faster than GPS.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, there has been a recent surge of interest in
extracting valuable information from graph structures in both
academia and industry. Today, in many problem domains that re-
quire graph computation, the graphs are becoming larger than ever
before. These graphs, such as social networks, can have billions of
vertices and up to trillions of edges [1,2].

Due to the fact that many graph algorithms exhibit irregular
access patterns [3], most graph-processing frameworks require

* Correspondence to: 2 Xue Yuan Road, University Town, Fuzhou, Fujian
350108.

E-mail address: chengyongli@hust.edu.cn (Y. Cheng).

that the graphs fit entirely in memory [4–8], necessitating either
a supercomputer or a very large cluster to process very large
graphs [4,9,10]. The excessive investment of a very large cluster
or a supercomputer discourages and possibly prevents many small
and medium-sized organizations from deploying their large-scale
graph-computing jobs.

In order to reduce hardware costs and improve efficiency,
several graph-processing frameworks, e.g., GraphChi [11] and
XStream [12], have been proposed to process graphs with billions
of edges on just one commodity computer, by relying on secondary
storage [11,12]. However, the performance of these frameworks
is limited by the limited secondary storage bandwidth of a single
compute node [13] and the significant difference in the access

https://doi.org/10.1016/j.future.2018.07.010
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.07.010
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2018.07.010&domain=pdf
mailto:chengyongli@hust.edu.cn
https://doi.org/10.1016/j.future.2018.07.010


Y. Cheng et al. / Future Generation Computer Systems 89 (2018) 698–712 699

speeds between secondary storage and main-memory [14]. Fur-
thermore, the limited amount of storage of a single commodity
computer can potentially limit the scale of the processed graphs,
since graphs continue to grow rapidly in size [10].

The key difference between the in-memory graph-processing
frameworks and single-node secondary storage based graph-
processing frameworks lies in the trade-off between the hardware
cost and performance, with the former trading off hardware cost
for performance while the latter doing the exact opposite. In this
paper, we propose a distributed disk-based graph-processing frame-
work, called DD-Graph that has the salient feature of both the low
hardware cost and high performance.

Distributed disk-based graph-processing frameworks target ef-
ficient big graph processing with a small cluster of commodity PCs
that is affordable tomost commonusers. However, it is challenging
to design an efficient distributed disk-based graph-processing sys-
tem since the total resources of a small cluster are limited. This is
also evidenced by most recent research results, such as Chaos and
Pregelix [10,15]. GraphD [16] is proposed recently to hide the disk
I/O cost by overlapping the disk I/Owith the communication inside
each compute node of the small cluster, improving the utilization
of the resources in each compute node. However, this solution is
efficient only for the network ecosystemwith low bandwidth [16].

DD-Graph is different from several recently proposed dis-
tributed disk-based graph-processing frameworks [10,15–17],
which improves the overall runtime of the graph-computing job
significantly by using the pipeline-based task scheduling strategy
that provides three key features as follows.

1. High convergence speed. By pipelining the tasks of the graph-
computing job, our scheduling strategy can reduce the num-
ber of supersteps of the graph-computing job significantly.
Since when computation Ci of task i has done, the compu-
tation Ci +1 of task i +1 can use the computation result
immediately. A task is defined as the execution process
of a partition in one superstep. This is important since, in
distributed disk-based graph-processing frameworks, the
runtime of each superstep is usually time-consuming when
processing a very large graph.

2. Eliminated synchronization overheads. During the execution
process of pipeline-based task scheduling strategy, there
is not a clear division between any two consecutive su-
persteps. Furthermore, when the stage of loading partition
has finished, the compute node can immediately execute
the computation stage of task t currently being launched
if the computation stage of task t − 1 has finished and the
computation result of task t −1 has arrived, eliminating the
costly synchronization overheads.

3. Network ecosystem friendliness. The performance of Chaos
[10] and Pregelix [15] relies heavily on the assumption that
network bandwidth far outstrips storage bandwidth. At the
other end of the spectrum of distributed disk-based graph-
processing frameworks research, GraphD [16] is designed
for the low-bandwidth networks. Thus, the disk I/O can be
hidden by the communication. However, DD-Graph is net-
work ecosystem friendly. It can hide almost the entire com-
munication time and the full disk I/O time by overlapping
the disk I/O and communication of each compute node with
the computations of other compute nodes, if a cluster with
an appropriate scale is available. DD-Graph also provides
two optimizations to further improve the communication
and the disk I/O efficiencies, as detailed in Sections 4.1 and
4.3.

The rest of the paper is structured as follows. Background and
motivation are presented in Section 2. Section 3 introduces the

pipeline-based task scheduling strategy. System design and opti-
mization are presented in Section 4. Experimental evaluations of
the DD-Graph prototype are presented in Section 5.We discuss the
related work in Section 6 and conclude the paper in Section 7.

2. Background and motivation

In this section, we first present a brief introduction to dis-
tributed in-memory graph-processing frameworks. We then dis-
cuss the single-node disk-based graph frameworks. The signifi-
cantly different characteristic between the two types of graph-
processing frameworks help motivate us to propose a distributed
disk-based graph-processing framework that has the characteris-
tics of both the low hardware cost and high performance.

2.1. Pregel-like graph-processing frameworks

Pregel-like graph-processing frameworks, such as Pregel [4],
GPS [5] and Giraph,1 adopt a vertex-centric computationmodel. In
these frameworks, an input graph is divided into partitions, each
of which resides in the memory of a compute node during the
execution process. A graph-computing job proceeds in a sequence
of iterations (supersteps), which terminates when all vertices vote
to stop the computation. In each iteration, a user-defined vertex-
program(v) function is invoked for each vertex v, conceptually in
parallel. Inside the vertex-program(v) function, the state of vertex
v is updated by using the old state and the incomingmessages that
were sent to v in the previous iteration; then vertex-program(v)
function generatesmessages based on the new state of v and sends
them to v’s neighbors. At the end of each iteration, all compute
nodes synchronize to ensure that all messages have been received
successfully.

Due to the ‘‘think-like-a-vertex’’ philosophy, these frameworks
are very user friendly for coding and debugging parallel graph
algorithms. Furthermore, in recent years, several in-memory dis-
tributed graph-processing framework, such as Gemini [18] and
BlitzG [19], have improved the system performance significantly
by overcoming the performance bottleneck caused by the fine-
grained and high-frequency communication. These frameworks
are very useful for high-end users to deploy their large-scale and
time-sensitive graph-computing job. For high-end users, such as
big companies and banks, they usually have a large number of
compute nodes necessitated by the combined requirement of large
aggregate memory space with respect to the size of the large-
scale graph and high system performance. However, high perfor-
mance is not always the first thing. For most small to medium
size companies and most research institutes, they usually need to
meet the increasing rapidly needs of processing large-scale graph
computations in a reasonable amount of time. In this case, a very
large cluster is not easily accessible in most small to medium size
companies andmost research institutes, possibly preventingmany
organizations from deploying their large-scale graph-computing
jobs.

2.2. Single-node graph-processing frameworks

In recent years, several graph-processing frameworks, such as
GraphChi [11] and Xstream [12], have been proposed to process
large-scale graphs on just a single commodity computer. However,
due to the costly I/O latency, they routinely suffer from poor
performance, leading to a long time used by users to wait for
the graph-computing results. In order to address this problem,
some techniques are proposed to reduce the I/O latency. Grid-
Graph [20] breaks graphs into 1D-partitioned vertex chunks and

1 Apache Giraph: http://giraph.apache.org.

http://giraph.apache.org


Download English Version:

https://daneshyari.com/en/article/6872864

Download Persian Version:

https://daneshyari.com/article/6872864

Daneshyari.com

https://daneshyari.com/en/article/6872864
https://daneshyari.com/article/6872864
https://daneshyari.com

