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ABSTRACT

Corner detection is a key kernel for many image processing procedures including pattern recognition and
motion detection. The latter, for instance, mainly relies on the corner points for which spatial analyses
are performed, typically on (probably live) videos or temporal flows of images. Thus, highly efficient
corner detection is essential to meet the real-time requirement of associated applications. In this paper, we
consider the corner detection algorithm proposed by Harris, whose the main work-flow is a composition
of basic operators represented by their approximations using 3 x 3 matrices. The corresponding data
access patterns follow a stencil model, which is known to require careful memory organization and
management. Cache misses and other additional hindering factors with NUMA architectures need to be
skillfully addressed in order to reach an efficient scalable implementation. In addition, with an increas-
ingly wide vector registers, an efficient SIMD version should be designed and explicitly implemented. In
this paper, we study a direct and explicit implementation of common and novel optimization strategies,
and provide a NUMA-aware parallelization. Experimental results on a dual-socket INTEL Broadwell-E/EP
show a noticeably good scalability performance.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Harris corner (and edge) detection [1,2] is an important kernel
in image processing, especially for motion detection and object

The common characteristic of image processing algorithms is
the heavy use of convolution kernels. Indeed, the typical scheme
is an iterative application of a stencil calculation at the pixel level.
This yields non-local and unaligned memory accesses, thus making
it hard to achieve a real-time performance implementation.
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recognition/detection/tracking [3,4]. Roughly speaking, the proce-
dure is a serial combination of 3 x 3 filters (derivatives and gaus-
sians), surrounded by basic arithmetic and selection operations.
This leads to a stencil computation which exposes two correlated
challenges concerning memory accesses and redundant computa-
tion. Since this kernel is likely to be called intensively on image
processing applications, which includes the embedded context,
fastest (at least real-time) implementations are crucial, hopefully
on various hardware targets.

A thorough implementation study is provided by Lacassagne
et al. in [5], where some of the basic ideas considered in this
paper are mentioned, especially arithmetic operations optimization
using the separability property of the filters, computation reduction,
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Fig. 1. Illustration of the Harris-Stephens corner detection.

memory accesses optimization through continuous data reuses, loop
collapsing 6] of the operators in order to reduce the lifetime of in-
termediate data, and array contraction [7-10] which takes advan-
tage of the shorter lifetime of intermediate variables to consider
a compact storage through memory location reassignments. The
SIMD part is left to the compiler (the native one for each consid-
ered architecture), and shared memory parallelism is implemented
with OpenMP (through classical directives). Other studies of Harris
corner detection and its applications can be found in [11-15].

In this paper, we follows the aforementioned basic ideas, but
directly carried on in the SIMD context. Indeed, we consider (i —
1,j — 1) <« (i,j) reindexation (as Kung-Lo-Lewis in [16] for the
algebraic path problem) for each convolution and thereby obtain a
perfectly aligned vector loads and stores at all levels of the loops.
Data reuse, factorization of the computations and optimal vector loads
are achieved through skillful registers shuffling and pipelining.

Regarding parallel implementation, we focus on the shared
memory paradigm and basically apply a row-strip distribution of
both input and output memory spaces among the working threads,
each of them having its private space for intermediate values. We
use Pthreads in order to have a full control of tasks allocation,
data partitioning and thread/core association (we prevent thread
migration). The main reason of this is that we are running on
a NUMA architecture where any unaware memory scenario can
incur a severe penalty [17-19]. We explicitly consider on-node
memory allocations together with threads binding routines to
implement an appropriate static partitioning, which minimizes
remote accesses and internode bus (QPI) contention.

Clearly, besides the optimization techniques mentioned in [5],
which include common ones and original ones, the novelty of
this paper is twofold: a direct SIMD scheduling of the computa-
tion considering similar optimization techniques enhanced with
efficient data management strategies and a NUMA-aware parallel
implementation dedicated to unconventional multicores.

The rest of the paper is organized as follows. The next section
(Section 2) provides a fundamental description of the Harris corner
detection procedure, followed by an overview of the related work
in Section 3. Section 4 introduces NUMA architectures and outlines
the main related concerns. Qur SIMD and SMP optimization strate-
gies are described in Section 5. Performance results are presented
and commented in Section 7. Section 8 concludes the paper.

2. The Harris algorithm for corner detection

Harris and Stephen [20] interest point detection algorithm is an
improved variant of the Moravec corner detector [21], used in com-
puter vision for feature extraction, motion detection, image matching,
tracking, 3D reconstruction and object recognition. An overview of
the foundation of the algorithm, as described in [ 13] and similarly
restated here, can be formulated as follows.

Let I(x, y) denote the intensity of a pixel location (x, y) of the
image, and A a given threshold.

1. For each pixel (x, y) in the input image, compute the Harris

matrix G = (g”‘ g*y) , with
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where ® denotes convolution operator and w is the Gaus-
sian filter.
2. For each pixel (x, y), compute the Harris criterion given by

c(x, y) = det(G)k(trace(G))?, (2)

where det(G) = gxx.gyygfy, k an empirical constant, and
trace(G) = gxx + &yy-

3. Set all c(x, y) which are below X to zero.

4. Extract points (x, y) having the maximum c(x, y) within a
window neighborhood. These points represent the corners.

Fig. 1illustrates the result of the algorithm for the corner detection
case.

The algorithm is mainly a successive application of convolution
kernels that globally implement a discrete form of an autocorrela-
tion S, given by

S(x,y) =Y wu, v)l(x, y) = I(x — u,y — v)P, (3)

u,v

where (x, y) is the location and I(x, y) its intensity, and u,v €
1, 2, 3 the components modeling the move on each dimension. At
a given point (x, y) of the image, the value of S(x, y) is compared
to a suitable threshold in order to determine the nature of the
corresponding pixel. Roughly speaking, the process is achieved by
applying four discrete operators, namely Sobel (S), Multiplication
(M), Gauss (G), and Coarsity (C). Fig. 2 displays an overview of the
global workflow.

Multiplication and Coarsity are point to point operators, while
Sobel and Gauss, which approximate the first and second deriva-
tives,are 9 — 1 or 3 x 3 operators defined by
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Applying a 3 x 3 operator H to a given pixel (x, y) consists in
summing up its point-to-point multiplication with the following
pixels matrix

Ix—1,y+1) Ix,y+1) Ix+1,y+1)
Ix—1,y) I(x,y) Ix+1,y) (6)
Ix—1,y—1) Ix,y—1) Ix+1,y—1)

Here comes the notion of border. In order to compute the output
H(x, y) for the pixel (x, y), we need its intensity I(x, y) and those
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