
Please cite this article in press as: T. Ahmad, et al., Identifyingworst-case user scenarios for performance testing of web applications usingMarkov-chainworkloadmodels,
Future Generation Computer Systems (2018), https://doi.org/10.1016/j.future.2018.01.042.

Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Identifying worst-case user scenarios for performance testing of web
applications using Markov-chain workload models
Tanwir Ahmad *, Dragos Truscan, Ivan Porres
Faculty of Science and Engineering, Åbo Akademi University, Vattenborgsvägen 5, 20500 ÅBO, Finland

a r t i c l e i n f o

Article history:
Received 2 August 2016
Received in revised form 1 January 2018
Accepted 20 January 2018
Available online xxxx

Keywords:
Performance testing
Markov chain
Genetic algorithms
Graph-search algorithms

a b s t r a c t

The poor performance of web-based systems can negatively impact the profitability and reputation
of the companies that rely on them. Finding those user scenarios which can significantly degrade the
performance of a web application is very important in order to take necessary countermeasures, for
instance, allocating additional resources. Furthermore, one would like to understand how the system
under test performs under increasedworkload triggered by theworst-case user scenarios. In our previous
work, we have formalized the expected behavior of the users of web applications by using probabilistic
workload models and we have shown how to use such models to generate load against the system under
test. As an extension, in this article, we suggest a performance space exploration approach for inferring
the worst-case user scenario in a given workload model which has the potential to create the highest
resource utilization on the systemunder testwith respect to a given resource.We propose two alternative
methods: onewhich identifies the exactworst-case user scenario of the givenworkloadmodel, but it does
not scale up for models with a large number of loops, and one which provides an approximate solution
which, in turn, is more suitable for models with a large number of loops. We conduct several experiments
to show that the identified user scenarios do provide in practice an increased resource utilization on the
system under test when compared to the original models.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A tremendous growth has been seen in the field of web tech-
nologies during the last two decades. The role of the web appli-
cations has changed from the traditional document presentation
system to the feature-rich distributed application that is accessible
worldwide. Web applications are increasingly being utilized by a
large number of companies to run critical business tasks. Thus,
ensuring the reliable and stable performance of web applications
is imperative for these companies. Poor performance makes the
end-users abandon the use of web applications and can cause
reputational and financial damage to those companies which rely
on web-based platforms [1].

Performance testing is the process of evaluating the respon-
siveness and scalability of a system under test (SUT) when it is
under a certain synthetic workload [2] corresponding to a specified
number of concurrent virtual users. During this process, different
key performance indicators (KPIs) (e.g., CPU, memory utilization)
are monitored in order to determine the performance level of the
SUT.

* Corresponding author.
E-mail addresses: tanwir.ahmad@abo.fi (T. Ahmad), dragos.truscan@abo.fi

(D. Truscan), ivan.porres@abo.fi (I. Porres).

In order to raise the level of abstraction and to promote the
reuse and faster update of performance test specifications, in our
previouswork, we have investigated how the expected behavior of
the users ofweb applications can be specified byusing probabilistic
models [3,4]. Suchmodels capture the expected behavior of a set of
users by encoding information about the order of their interactions
with the SUT, the delay (think time) between these interactions,
and the probability of a given sequence of interactions to occur.
Each traversal of the model graph simulates a timed sequence of
interactions between the virtual user and the web application. By
simulating concurrently one model for each virtual user, we can
generate the corresponding synthetic workload using our MBPeT
model-based performance testing tool [3].

In many situations (e.g., stress testing) one would like to know,
before the performance testing session begins, the worst-case user
scenario in a givenworkloadmodel that will potentially trigger the
highest utilization of a given resource on the SUT. Such scenario can
then be used to benchmark the SUT for possible performance bot-
tlenecks. In practice, this implies finding the path in the workload
model graphwhichwill generate the sequence of interactionswith
the highest resource utilization on the SUT over a sustained period
of time.

In this article, we attempt to answer two research questions:

https://doi.org/10.1016/j.future.2018.01.042
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.01.042
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:tanwir.ahmad@abo.fi
mailto:dragos.truscan@abo.fi
mailto:ivan.porres@abo.fi
https://doi.org/10.1016/j.future.2018.01.042

Please cite this article in press as: T. Ahmad, et al., Identifyingworst-case user scenarios for performance testing of web applications usingMarkov-chainworkloadmodels,
Future Generation Computer Systems (2018), https://doi.org/10.1016/j.future.2018.01.042.

2 T. Ahmad et al. / Future Generation Computer Systems () –

1. RQ1: how can we identify the sequence of interactions in a
given workload model which causes the highest utilization
of a given resource of the SUT under a sustained period of
time?

2. RQ2: what is the scalability of the proposed approach?

In order to answer RQ1, we propose two distinct methods
for identifying the worst-case user scenario. The first method is
based on graph-search algorithms and provides the exact solution,
whereas the second method provides a near-optimal solution.
For validation purposes, we run an example where the solutions
resulting from applying the two proposed methods are used to
generate syntheticworkload against the SUT.We then compare the
resource utilization they trigger on the SUT with the one triggered
by the original workload model.

In order to answer RQ2, we analyze and compare the two
methods with respect to their complexity and, respectively, to the
precision of the solution, and discuss their benefits and drawbacks.

The rest of the paper is structured as follows: Section 2 provides
background information on our proposed approach. We describe
the process of load generation for performance testing in Section 3.
Section 4 presents an overview of the related work. In Section 5,
we describe in detail the steps of our approach. We empirically
validate and evaluate our approach in Section 6, while we present
conclusions in Section 7.

2. Using Markov chains for modeling the workload

A Discrete Time Markov Chain (DTMC) [5] is a discrete time
stochastic process which has the property that given the current
state, the future of the process is conditionally independent of
the previous states. Let Xn, n = 0, 1, 2, 3 be a stochastic process
which takes on a finite number of states or values which can be
written as a set of non-negative integers {0, 1, 2, . . .}. If the process
is currently in state sn at time n, we denote it as Xn = sn. If we
suppose that whenever the process is in state sn, the process will
change its state to sn+1 with a fixed probability Psnsn+1 , then we can
state the property of Markov chains as

P{Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, . . . X1 = s1, X0 = s0}
= Psnsn+1

where Psnsn+1 denotes the probability of transitioning from one
state to another state in a single step (or one unit of time), and it is
known as the one-step transition probability.

We model the expected behavior of the users using a slightly
modified version of DTMC model, which we formally define as a
tuple M = (S, T ,U r ,Utilr , sI) where:

1. S = {s0, s1, . . . , sn} is a finite set of states;
2. T = {t0, t1, . . . , tn} is a finite set of transitions, such that

ti = {⟨si, sj⟩|si, sj ∈ S} for all i, j 0 ≤ i, j ≤ n;
3. U r

= {ur
0, u

r
1, . . . , u

r
n} is a finite set of resource utilizations

for a given resource r , and ur
i is in correspondence with si.

Utilr is amapping function from si to ur
i so thatUtilr (si) = ur

i ;
4. sI ∈ S is the start state.

Informally, we extend DTMC with two additional labels on the
edges: probability value and think time. The probability value spec-
ifies the chances of that particular edge being chosen according to
a probability mass function, whereas the think time represents the
amount of time that a user waits between two consecutive inter-
actions. In addition, each state in the DTMC model is tagged with
an action specifying the interaction between the user and the SUT.
An action specifies either an HTTP request or a set of HTTP requests
that the user sends to the SUTwhenever the corresponding state is
visited.

Fig. 1. Markov Chain model of a user.

The DTMC model in Fig. 1 shows a workload model of an auc-
tioning web application, which allows registered users to search,
browse, and bid on auctions that other users have created. For
instance, after performing a browse(), the user can execute either
get_auctions() action with a probability of 0.87 (after waiting for
3 s) or exit() with a probability of 0.03 after waiting for 2 s. In
the model, start() and exit() are pseudo-states which are only used
to indicate the initial and the optional final state of the model,
respectively, and they cause no interaction with the SUT.

Different works suggested that such workload models can be
obtained from either the requirements of the SUT or Service Level
Agreements (SLAs) [4], or by analyzing the historical usage of the
system [6–8]. The workload model in Fig. 1 is built using the latter
approach following the method described in [6].

3. Workload generation

In this paper, we use our MBPeT (Model-based Performance
Testing) [3] tool for load generation. MBPeT is an online per-
formance testing tool, which generates a synthetic semi-random
workload against the SUT by simulating a workloadmodel, such as
the one in Fig. 1 for each concurrent virtual user. The simulation of
a workload model for a virtual user begins from the start() state.
On each state, the tool chooses the next state according to the
probability mass function of the current state, while observing the
think time values on the visited edges. The simulation ends when
the exit() state is reached. In short, a sequence of states is generated
and executed during the simulation. Whenever a state is visited,
the corresponding action is executed against the SUT via a test
adapter.

There are different parameters of the testing process that can be
provided as command line parameters to the tool such as a ramp
function (specifying the amount of concurrent virtual users during
a test session), duration of the test session, etc. The workload is
generated in a distributed fashion, using multiple load generating
nodes, and applied in real-time to the SUT,whilemeasuring several
key performance indicators, such as response time, throughput,

Download English Version:

https://daneshyari.com/en/article/6872972

Download Persian Version:

https://daneshyari.com/article/6872972

Daneshyari.com

https://daneshyari.com/en/article/6872972
https://daneshyari.com/article/6872972
https://daneshyari.com

