Future Generation Computer Systems I (1NIN) IRE-EEE

journal homepage: www.elsevier.com/locate/fgcs e

Contents lists available at ScienceDirect

Future Generation Computer Systems

=
FiGICIS!

Algorithms and data structures to accelerate network analysis”
Jordi Ros-Giralt *, Alan Commike, Peter Cullen, Richard Lethin

Reservoir Labs, 632 Broadway Suite 803, New York, NY 10012, United States

HIGHLIGHTS

A New queuing algorithm to reduce packet drops in hardware queues.

New lockless bimodal producer-consumer queue to eliminate multi-thread contention.
Algorithm to dynamically shunt traffic while maximizing information entropy.

Lockless hash table with low false negatives to eliminate memory contention overheads.
Multiresolution priority queues to reduce the complexity of a priority queue down to O(1).

ARTICLE INFO ABSTRACT

Article history:

Received 31 January 2018
Accepted 10 April 2018
Available online xxxx

As the sheer amount of computer generated data continues to grow exponentially, new bottlenecks are
unveiled that require rethinking our traditional software and hardware architectures. In this paper we
present five algorithms and data structures (long queue emulation, lockless bimodal queues, tail early
dropping, LFN tables, and multiresolution priority queues) designed to optimize the process of analyzing

network traffic. We integrated these optimizations on R-Scope, a high performance network appliance
that runs the Bro network analyzer, and present benchmarks showcasing performance speed ups of 5X at

traffic rates of 10 Gbps.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

System wide optimization of network components like routers,
firewalls, or network analyzers is complex as it involves the proper
orchestration of at least hundreds of different algorithms and data
structures interrelated in subtle ways. In these highly dynamic
systems, bottlenecks quickly shift from one component to another
forming a network of micro-bottlenecks. This makes it challenging
to understand which elements should be further optimized to get
that extra unit of performance. Moreover, these shifting micro-
bottlenecks are interconnected in peculiar ways so that optimizing
one of them can often lead to an overall degradation of perfor-
mance. This is due to internal system nonlinearities such as those
found in hierarchical memory architectures. For instance, while
optimizing the transfer of packets from the wire to the application
is known to be critical, in the limit pushing too many packets
to the application is detrimental as packets that eventually need

* This work was funded in part by the US Department of Energy, United States
under contracts DE-SC0017184, DE-SC0006343 and DE-SC0004400.
* Corresponding author.
E-mail addresses: giralt@reservoir.com (J. Ros-Giralt), commike@reservoir.com
(A. Commike), cullen@reservoir.com (P. Cullen), lethin@reservoir.com (R. Lethin).

https://doi.org/10.1016/j.future.2018.04.034
0167-739X/© 2018 Elsevier B.V. All rights reserved.

to be dropped will cause a net negative effect by thrashing the
processors’ local caches, increasing the overall cache miss ratios
and hence decreasing system wide performance. The process of
performance optimization should therefore be a meticulous one
which requires making small but safe steps avoiding the pitfall
of pursuing short term gains that can lead to a new and bigger
bottleneck down the path.

In this paper we present five of such safe steps that have helped
to optimize the performance of R-Scope, a high performance ap-
pliance that runs the network analyzer Bro at its core [1]. Each of
these steps introduces a new algorithm or data structure designed
to accelerate system wide performance, each one addressing a dif-
ferent shifting micro-bottleneck. While we use Bro to demonstrate
the efficacy of these optimizations, they are of general purpose
and so we believe these techniques can be generally applied to
the problem of accelerating network analysis or, to some degree, to
optimize other more active network components such as firewalls
or routers.

This paper is organized as follows. Section 2 is dedicated to
describing the five HPC algorithms in detail, providing algorith-
mic descriptions of how they work and independent benchmarks
illustrating how they help improve performance by decongesting
a specific bottleneck. Section 3 provides a system wide benchmark

Please cite this article in press as: J. Ros-Giralt, et al., Algorithms and data structures to accelerate network analysis, Future Generation Computer Systems (2018),

https://doi.org/10.1016/j.future.2018.04.034.



https://doi.org/10.1016/j.future.2018.04.034
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:giralt@reservoir.com
mailto:commike@reservoir.com
mailto:cullen@reservoir.com
mailto:lethin@reservoir.com
https://doi.org/10.1016/j.future.2018.04.034

2 J. Ros-Giralt et al. / Future Generation Computer Systems I (1111) IIE-111

measuring the performance of all the algorithms working together.
We summarize and conclude the paper in Section 4.

2. Algorithms and data structures
2.1. Long queue emulation for packet forwarding

High performance network interface cards (NICs) help accel-
erate the process of moving packets from the wire to the appli-
cation by using techniques such as receive side scaling (RSS), zero
copy, packet coalescence or kernel bypass, among others [2]. These
cards achieve higher performance by leveraging hardware at the
cost of losing some degree of flexibility and programmability. For
instance, one common element of rigidity found in HPC NICs is the
amount of memory embedded in their chip, which limits the size of
the rings used to temporarily hold packets as they are transferred
to the application. As a result, temporary high bursts of traffic that
cannot be handled fast enough by the application may overflow
these hardware rings leading to packet drops.

A traditional way to address packet drops originated from a
limited size ring (LSR) is to dedicate one or more dispatcher threads
(DT) to move packets out of the ring and put them into one or
more software queues connected to the application threads (AT)
residing on the host. Because the host does not have the embedded
memory restrictions of the NIC, the software queues effectively
have unlimited size. Consequently, packet drops due to bursty
traffic are eliminated provided that the dispatcher threads can
move packets from the limited size rings (LSR) to the unlimited
size queues (USQ) fast enough. This solution is illustrated in Fig. 1.

While this solution seems sound at a high level, in the context
of HPC the dispatcher thread introduces the following subtle but
important performance penalties:

e Packet read cache penalty. If the dispatcher thread (DT) needs
to read the packet - for instance, if it needs to compute the
hash of the packet’s IP tuple to decide which destination
queue the packet should be forwarded to - then the packet
will need to be loaded into the local cache. Since the ap-
plication thread (AT) will also need to read the packet for
its own processing, the dispatcher model requires loading a
packet to the cache twice (one time on the DT’s local cache
and a second time on the AT’s local cache). This negatively
impacts performance because cache misses — which require
accessing memory to fetch data - are typically ten times
slower than cache hits. As a general principle, a good design
should aim for a single cache load throughout the lifetime of
each packet.

e Descriptor read cache penalty. Even if the DT does not need
to read the packet - e.g., some implementations can extract
the hash of the packet’s IP tuple from the packet context
information provided by the hardware - the DT will still
need to load the packet descriptor onto its local cache. (A
packet descriptor is a small software data structure part of
all NIC drivers containing a pointer to the packet buffer and
additional control metadata such as the packet length or the
hash of its IP tuple, among others.) In this case, during the
lifetime of a packet, its descriptor needs to be loaded twice,
once at the DT’s local cache and a second time at the AT’s
local cache. Just like before, a good design should target one
single cache load for each individual packet descriptor.

e Memory and compute overhead. Yet another overhead in-
troduced by this approach is the additional memory and
compute resources required to run the dispatcher threads
themselves.

To avoid the above performance penalties, we propose to use
long queue emulation (LQE), a simple but efficient technique that
eliminates the overhead introduced by the dispatcher thread with
the potential to also reduce packet drops.

The main concept behind LQE is to emulate the behavior of the
dispatcher thread solution by folding the actions performed by the
DT thread into the AT thread. Consider first the pseudocode of the
DT and AT threads separately as implemented by the dispatcher
model:

DtThread()

1 while true:

2 get alls packets from the front of LSR;
3 put the packets to the tail of USQ;
AtThread()

4 while true:

5 get one packet from the front of USQ;

6 process the packet;

While in the dispatcher thread solution the DtThread()
and the AtThread() procedures are run on two independent
threads, in the long queue emulation model we fold DtThread ()
into AtThread() as a single thread running the procedure
AtLgeThread():

AtLgeThread()

1 while true:

2 get all packets from the front of LSR;
3 put the packets to the tail of USQ;

4 get one packet from the front of USQ;
5 process the packet;

The key characteristic of the AtLqeThread () procedure is that
it ensures all packets from the LSR ring are moved to the USQ
queue before the next packet is processed, effectively giving the
highest priority to the ring. This approach emulates the behavior
of the dispatcher model with one single thread performing both
the DT and the AT procedures. As a result, both packets and packet
descriptors are loaded into the cache only once (at the AT’s local
cache) and there is no additional memory and compute overhead
to maintain the dispatcher threads. We illustrate the LQE model in
Fig. 2.

More formally, we describe the performance properties of the
long queue emulation model in the following lemma:

Lemma 1 (Long Queue Emulation Performance). Let A and Apqx be
the average and the maximum packet arrival rate measured at the LSR
ring, respectively. Assume for the sake of simplicity and without loss
of generality, that the time to process a packet is constant, and let 4
and g be the packet processing rate of the DT model and the LQE
model, respectively—that is, w4 and g correspond to one divided
by the time it takes to execute line 6 in At Thread () and line 5 in the
AtLgeThread (). If Sy is the maximum number of packets that can
be held in the LSR ring, then the following is true:

(1) tige > Mar-

(2) If Sisr/Amax = 1/ige, the performance of the LQE model is
superior to the performance of the DT model.

(3) If Sisr/Amax < 1/puige and A > puige, the performance of the LQE
model is superior to the performance of the DT model.

(4) If Sisr/Amax < 1/ige and A < [Lige, the performance of the DT
model is superior to the performance of the LQE model.

Proof. It is easy to see that p > g because the LQE model
does not suffer from DT’s performance penalties due to extra cache

Please cite this article in press as: J. Ros-Giralt, et al., Algorithms and data structures to accelerate network analysis, Future Generation Computer Systems (2018),

https://doi.org/10.1016/j.future.2018.04.034.




Download English Version:

https://daneshyari.com/en/article/6873017

Download Persian Version:

https://daneshyari.com/article/6873017

Daneshyari.com


https://daneshyari.com/en/article/6873017
https://daneshyari.com/article/6873017
https://daneshyari.com

