
Please cite this article in press as: Z. Shmeis, M. Jaber, Fine and coarse grained composition and adaptation of spark applications, Future Generation Computer Systems
(2018), https://doi.org/10.1016/j.future.2018.04.048.

Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Fine and coarse grained composition and adaptation of spark
applications
Zeinab Shmeis, Mohamad Jaber *
American University of Beirut, Computer Science Department, Lebanon

a r t i c l e i n f o

Article history:
Received 15 September 2017
Received in revised form 26 March 2018
Accepted 17 April 2018
Available online xxxx

Keywords:
Spark
Component-based design
Quality of service
Code generation

a b s t r a c t

Spark is a framework used to analyze big data applications. In this paper, we introduce a framework
to build complex Spark applications by composing simpler ones. We use two levels of granularity for
composition. The fine (resp. coarse) granularity focuses on composing sub-Spark (resp. Spark) applications
to build a more complex one. Composition takes as input a configuration file that defines the connection
between sub-spark and Spark applications. Moreover, in case of composing sub-Spark applications, we
introduce different scenarios to automatically persist and un-persist most used data to achieve a better
performance.We also present amethod to parameterize a system consisting of several Spark applications
with respect to their quality of executions. Then, we introduce several strategies to dynamically select the
maximum quality levels to execute the given Spark applications, while meeting a user-defined deadline.
We present experimental results showing the effectiveness of our method with respect to composition,
performance and quality of service of Spark applications.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since 2003, Big Data has become the new trend after Google
started working with its project Google File System (GFS) [1], and
this huge interest in Big Data has advanced the development of
systems for large scale analytics. The MapReduce programming
model proposed in [2,3] was the first to efficiently process data
on a cluster. However, MapReduce has several limitations: (1) it
introduces latency between each map and reduce step because of
shuffling its data to the network and writing them to the disk; (2)
it is not interactive as it can only process data in batches; (3) it
is unable to support iterative applications, which are required by
most algorithms in data science and machine learning toolboxes;
(4) it is not user friendly as it can only support two functions map
and reduce. For this, Sparkwas proposed in [4] to allow interactive
and iterative jobs and after that evolved to be one of themost active
open-source Apache projects with a huge developer and user com-
munity. Spark abstracts data collections as Resilient Distributed
Datasets (RDDs), which are partitioned across several nodes so that
they can be operated on in parallel. The Spark programmingmodel
is easy to use and have extensible APIs in different languages such
as Scala, Java, Python, and R. It is based on higher-order functions
that execute user-defined functions. These higher order functions
are of two types: Transformations and Actions. Transformations,

* Corresponding author.
E-mail addresses: zhs07@mail.aub.edu (Z. Shmeis), mj54@aub.edu.lb

(M. Jaber).

such asmap and filter, apply a function on each RDD element and
result in a newRDD. Actions trigger the execution of such functions
and producemeaningful results which is returned to the coordina-
tor program, called driver. For each action in a Spark application, a
job is performed, which includes several RDD transformations.

Spark’s scheduler creates a physical execution plan for the job
based on the RDD lineage (aka RDD dependency graph) which is a
directed acyclic graph (DAG) of transformations. The physical plan
is divided into stages. A stage is a sequence of transformations that
can be pipelined (executed, without data movement, in parallel
over all data partitions). Pipelining transformations are deliber-
ately grouped together in a single stage to speed-up performance.
The sequence of computations defined by a stage instantiated over
a single data partition is called a task. A task is the actual unit of
execution of the physical plan.

The contribution of this paper is two-fold.

• Component-based Spark. Spark applications are getting
larger and more complex, calling for a shift from Spark pro-
gramming to Spark system composing. Therefore, we define
a high-level specification language to develop Spark ap-
plications independently and automatically compose them.
For each application, we export its input and output in-
terfaces, then we define a configuration file to compose
those interfaces. Our language handles two cases of com-
posing Spark applications. The first case, coarse grained
composition, each Spark application is considered as one
component that can run as a whole and writes its output

https://doi.org/10.1016/j.future.2018.04.048
0167-739X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2018.04.048
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:zhs07@mail.aub.edu
mailto:mj54@aub.edu.lb
https://doi.org/10.1016/j.future.2018.04.048

Please cite this article in press as: Z. Shmeis, M. Jaber, Fine and coarse grained composition and adaptation of spark applications, Future Generation Computer Systems
(2018), https://doi.org/10.1016/j.future.2018.04.048.

2 Z. Shmeis, M. Jaber / Future Generation Computer Systems () –

to distributed file system that can be later on read by an-
other Spark application as input. In this case, our method
automatically augments each application with the proper
code to send (e.g., when a Spark application terminates) and
receive from/to other applications. Whereas the other case,
fine grained composition, we consider sub-Spark applica-
tions, which can be composed to generate a more complex
one. Each sub-Spark application consists of a sequence of
computation blocks separated with place holders denot-
ing input and output RDDs or location in a distributed file
system. As such, a mapping can be defined between the
place holders of sub-Spark applications. Then, our method
automatically merges sub-Spark applications by renaming
variables and ordering blocks of executions, and generates a
monolithic Spark application. Moreover, for the fine grained
composition, we define a method to persist outputs that
are used by several other sub-Spark application in order
to improve the overall execution time of the new resulting
program. These two cases of composition allows to simplify
the development of complex system consisting of several
dependent Spark applications. Furthermore, for the same set
of (sub-)Spark applications, several systems may be built by
simply changing the input configuration file.

• Adaptive Execution of Spark Applications. Several compa-
nies provide services to deploy and run Spark applications
on the cloud (e.g., Amazon Web Services, Microsoft Azure).
The pricing generally depends on the power of the allocated
nodes and the execution time needed to run the appli-
cations. However, execution times may considerably vary
over time as they depend on the application. Furthermore,
non predictability of the underlying platform and operating
systems are additional factors of uncertainty. For this, we
propose amethod to run a sequence of parameterized (Qual-
ity of Service) Spark applications within a specified time.
Parameterized applications are those that can be augmented
with an extra parameter denoting the quality level. For
example, machine learning and graph analytics are good ex-
amples of parameterized applications, since their quality de-
pend on the number of rounds (the more rounds the better
quality). Consequently, using ourmethod, cloud services can
provide userswith the ability to specify a deadline/price and
a sequence of Spark applications to be executed using the
best quality levels possible. A controller iteratively selects
the best quality for each Spark application depending on the
remaining deadline and time already used.

This paper is an extended version of our earlier work in [5].
More specifically, this paper provides the following additional
contributions: (1) integrating the fine grained composition of sub-
Spark applications and distinguishing it from the coarse grained
composition defined in the previous work, (2) defining several
strategies to automatically (un)persist data for the fine-grained
composition, (3) extending the experimental resultwork by adding
new case studies, in addition to (4) extending the related work.

The remaining of this paper is structured as follows. Section 2
defines the language for the coarse grained composition of Spark
applications. Section 3 describes the fine grained composition
of sub-Spark applications, and defines the strategies used for
(un)persisting data. Section 4 defines a method to adapt the qual-
ity levels to execute Spark applications while respecting a given
deadline. Section 5 discusses related work. Finally, Sections 6 and
7 draw some conclusions and perspectives.

2. Coarse grain composition of Spark applications

Given a set of dependent Spark applications, we define a coarse
grain composition,which automatically generates thewait/receive

Fig. 1. Representation of dependencies between sub-jobs.

and notify/send setup between them. Each spark application takes
a set of inputs (e.g., location to files) and produces a set of outputs
(files). We distinguish between free and direct input. A free input
is an input mapped to an output of a different spark application,
while a direct input is a one mapped to a direct path. Formally, a
spark application is defined as follows:

Definition 1 (Spark Application). A spark application SA is defined
as a set of tuple (ins, outs), where:

• ins = freeIns ∪ directIns is the set of inputs;
• outs is the set of outputs.

Given a user-specified configuration, spark applications are
composed by mapping outputs of spark applications to free inputs
of other applications. Formally a configuration is defined as fol-
lows:

Definition 2 (Configuration). Given a set of spark application
{SAi}i∈I , a configuration C is a function defined by C : Input →

Output , where:

• Input =
⋃

i∈ISAi.freeIns;
• Output =

⋃
i∈ISAi.outs.

Example 1. Fig. 1 shows an example of composing spark applica-
tions. The system consists of five Spark applications SA1, . . . , SA5.
SA1 has one direct input i1 and two outputs o1 and o2. SA2 has one
free input i1 and one output o1. First output o1 of SA1 is mapped to
the free input i1 of SA2.

Definition 3. Given a set of spark applications {SAi}i∈I , and a
configuration C , we define the directed graph G = (V , E), where:

• V = {SAi}i∈I , is the set of vertices representing the Spark
applications in the set;

• E = {(SAi, SAj) | ∃ out ∈ SAi.outs ∧ freeIn ∈ SAj.freeIns :

C(freeIn) = out}, is the set of edges representing themapping
between {SAi}i∈I .

Based on the build graph from {SAi}i∈I and C , a configuration is
valid iff:

• Free inputs are mapped to outputs of different applications.
That is, if C(SAi.fi1) = SAj.o1, then i ̸= j, where fi1 is a free
input in SAi and o1 is an output in SAj.

• The directed graph G obtained from {SAi}i∈I and C does not
contain cycles, that is no vertex is reachable from itself.

Example 2. The system defined in Fig. 1 is valid since (1) all free
inputs are mapped to outputs of different applications; and (2) the
graph obtained by connecting outputs to free inputs is acyclic.

Download English Version:

https://daneshyari.com/en/article/6873025

Download Persian Version:

https://daneshyari.com/article/6873025

Daneshyari.com

https://daneshyari.com/en/article/6873025
https://daneshyari.com/article/6873025
https://daneshyari.com

