
Please cite this article in press as: Y. Cheng, et al., Efficient cache resource aggregation using adaptive multi-level exclusive caching policies, Future Generation Computer
Systems (2017), http://dx.doi.org/10.1016/j.future.2017.09.044.

Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Efficient cache resource aggregation using adaptive multi-level
exclusive caching policies
Yuxia Cheng a,*, Yang Xiang a, Wenzhi Chen b, Houcine Hassan c, Abdulhameed Alelaiwi d
a Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
b Zhejiang University, Zheda Road 38, Xihu District, Hangzhou, China
c Polytechnic University of Valencia, Camino de Vera, s/n 46022, Valencia, Spain
d King Saud University, Riyadh 11543, Saudi Arabia

h i g h l i g h t s

• Propose a new multi-level exclusive cache policy.
• Design a new local Reuse Distance based Adaptive Replacement Caching (ReDARC) Algorithm.
• Design a new distributed Adaptive Level-Aware Caching Algorithm (ALACA).

a r t i c l e i n f o

Article history:
Received 1 December 2016
Received in revised form 1 August 2017
Accepted 16 September 2017
Available online xxxx

Keywords:
Buffer cache
Multi-level
Exclusive caching
Adaptive policy

a b s t r a c t

Multi-level buffer cache hierarchies are now commonly seen in most client/server cluster configurations,
especially in today’s big data application deployment. However, multi-level caching policies deployed
so far typically use independent cache replacement algorithms in each level, which has two major
drawbacks: (1) File blocks may be redundantly cached on multiple levels, reducing the actual aggregate
cache usable size; (2) Less accurate replacement decisions at lower level caches due to weakened
locality. Inefficient cache resource usage may result in noticeable performance degradation for big data
applications.

To address these problems, we propose new adaptive multi-level exclusive caching policies that can
dynamically adjust replacement and placement decisions in response to changing access patterns. (1)
First, to capture locality information in multi-level cache hierarchies, we propose a Reuse Distance based
Adaptive Replacement Caching (ReDARC) algorithm that adopts reuse distance as the means of locality
measure and adaptively balances between the Small Reuse Distance (SRD) set and Large Reuse Distance
(LRD) set. (2) Second, to achieve exclusive caching and make global caching decisions, we propose an
Adaptive Level-Aware Caching Algorithm (ALACA) that works collaboratively with ReDARC. The ALACA
algorithmuses an adaptive probabilistic PUSH technique that allows lower caches to push blocks to higher
caches and appropriately decide blocks’ caching locations with the ReDARC algorithm. In this way, we
achievemulti-level exclusive cachingwith significant cache performance improvement. Our trace-driven
simulation experiments show that the policies we proposed achieve a reduction of the client average
response time of 8 percent to 56 percent over other multi-level cache schemes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the performance gap between processors and storage sys-
tems grows, memory cache plays an important role in the overall
system performance. Buffer cache in computing systems is used
to provide quick access to recently or frequently used data resides
in storage devices [1]. In modern data centers, high-end storage

* Corresponding author.
E-mail address: yuxia.cheng@deakin.edu.au (Y. Cheng).

systems typically have tens or even hundreds of gigabytes of cache
RAM [2] to improve I/Operformance, and clients of storage systems
also have several gigabytes of memory for caching. All these buffer
caches form an increasingly large amount of memory capacity.

Although storage caches and client caches become larger and
larger, they do not achieve the performance commensurate to their
aggregate cache resource [3]. Therefore, how to effectively and
efficiently utilize this buffer cache resource becomes an important
issue. Especially in today’s service-oriented cloud computing envi-
ronment, multi-level buffer cache hierarchies are commonly seen
in most client/server cluster systems [4]. For example, in the data

http://dx.doi.org/10.1016/j.future.2017.09.044
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.09.044
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:yuxia.cheng@deakin.edu.au
http://dx.doi.org/10.1016/j.future.2017.09.044

Please cite this article in press as: Y. Cheng, et al., Efficient cache resource aggregation using adaptive multi-level exclusive caching policies, Future Generation Computer
Systems (2017), http://dx.doi.org/10.1016/j.future.2017.09.044.

2 Y. Cheng et al. / Future Generation Computer Systems () –

center scenario, a typical application server uses local DRAMas first
level cache, and connected to a remote high-end SSD storage server
as the second level cache, and finally connected to a remote large
volume storage server as the whole data storage medium. We are
facing the challenge of effectively managing large amounts of I/O
buffer caches and multi-level cache hierarchies [5].

In a traditional three-tierWeb server configuration, each server
tier has large buffer caches which is typically seen in big data
applications. Most multi-tier server configurations deployed so
far use independent buffer cache management policies at each
level. Previous research [6] pointed out that single-level cache
replacement algorithms perform unsatisfactory when used in the
multi-level cache hierarchies. Therefore, inefficient management
of these caches may result in noticeable performance degradation
for big data applications. In this paper, we propose the new univer-
sal hierarchy-aware multi-level cache management policies that
collaboratively and efficiently manage buffer cache hierarchies to
achieve better overall cache performance.

1.1. Challenges in multi-level caching

Previous researches have focused on efficient management
of buffer caches to improve system performance. The single-
level cache replacement algorithms were extensively studied for
decades. The LRU algorithm is widely used due to its simplicity
and generality, and many new replacement algorithms, such as
LRU-K [7], 2Q [8], LRFU [9], LIRS [10], ARC [11] etc., are proposed
to address the deficiency of LRU in handling some sequential or
looping data access patterns. However, single-level cache man-
agement policies deployed in multi-level cache hierarchies are
considered inefficient. Multi-level caching faces the following two
major challenges:

(1) The first challenge is the weakened locality in lower level
caches. Caching is based on the temporal locality principle of data
accessing, and only the first level cache can see the original access
pattern. Lower level caches can only see the misses in higher
level caches. Therefore, application’s access requests, as seen by
lower level caches, are filtered by the higher level caches. The
result is that traditional single-level cache algorithms that manage
each cache level independently cannot effectively manage original
locality in multi-level cache hierarchies.

(2) The second challenge is data redundancy. In level indepen-
dent caching, data may be cached redundantly by multiple cache
layers. This results in smaller actually usable cache resources than
the aggregated cache resources in multi-level cache hierarchies.
Particularly when each level has comparable cache size, a large
proportion of data blocks stored in lower level caches will not be
accessed. For example, in a multi-level cache with the first-level of
DRAM (128 GB), the second level of high-end pci-e SSD (500 GB),
the third level of data SSD (1 TB).

1.2. Our approach

In this paper, we propose the new adaptive multi-level caching
policies that dynamically adjust replacement and placement deci-
sions in response to changing data access patterns.

First, we propose a single-level Reuse Distance based Adaptive
Replacement Cache (ReDARC) algorithm. ReDARC adopts reuse
distance as a means of locality measure rather than recency that is
typically used in LRU-like cache algorithms, and divides accessed
blocks into Small Reuse Distance (SRD) set and Large Reuse Dis-
tance (LRD) set. ReDARC adaptively balances the sizes of SRD and
LRD sets according to evolving access patterns and guarantees
that blocks in SRD set are all cached in memory. We use ReDARC
to address the weakened locality challenge in multi-level cache
hierarchies.

Second, we propose an Adaptive Level-Aware Caching Algo-
rithm (ALACA) thatworks collaborativelywith ReDARC. TheALACA
algorithm uses an adaptive probabilistic PUSH technique that al-
lows lower caches to push blocks to higher caches and appropri-
ately decide blocks’ caching locations with the ReDARC algorithm.
Using a simple hint information provided by the ReDARC algo-
rithm, the ALACA algorithm can adaptively make global caching
decisions and achieve the multi-level exclusive cache property
across the hierarchy. Through the efficient cooperation of ReDARC
and ALACA algorithms (shortened as REAL policy), our solution
(the REAL policy) can effectively address the data redundancy and
weakened locality problems with low network traffic, disk I/O
and computational overheads. The trace-driven simulation exper-
iments show that the cache replacement policies we proposed
achieve the improvement of the client average response time of 8
percent to 56 percent over other state-of-the-art multi-level cache
schemes.

The rest of this paper is organized as follows: Section 2discusses
relatedwork. Section 3 describes our designmotivation of adaptive
multi-level exclusive caching policies. Section 4 presents a detailed
description of our proposed adaptive algorithms. In Section 5, we
report trace-driven simulation results for performance evaluation
and comparisons of several multi-level caching schemes. Finally,
we conclude and discuss future work in Section 6.

2. Related work

Previous researchers have studied the single level cache re-
placement algorithms for decades. Belady’s MIN [12] is an optimal
off-line algorithm [13]. The classic LRU algorithm is widely used.
When cache is full, LRU replaces the least recently used blocks.
However, pure LRU only captures recency information and does
not capture frequency information. Many new replacement algo-
rithms, such as LRU-K [7], 2Q [8], LRFU [9], LIRS [10], ARC [11]
and SOPA [14] are designed considering both recency and fre-
quency and capturing various access patterns. These algorithms
were proposed in the single level cache hierarchy and did not take
multi-level cache hierarchies into account. Specifically, LIRS [10]
uses the reuse-distance based algorithm while its cost of keeping
ghost caches are high. ARC [11] leverages the adaptive technique
to adjust frequently accessed blocks with two dynamic list while it
considers little reuse distance metric. The ReDARC algorithm pro-
posed in this paper combines the benefits of using reuse distance
and adaptive adjustment.

Multi-level cache management faces more challenges than sin-
gle level cache management. Multi-level caching policies need to
address challenges like weakened locality in lower level caches
and data redundancy among different cache levels. Zhou et al. [15]
proposed MQ replacement algorithm that leverages multiple lists
to keep frequently accessed blocks with long reuse intervals. MQ
was designed to improve the second-level cache performance.
Bairavasundaram et al. [16] presented the X-RAY mechanism that
monitors metadata updates in the RAID controller cache, and uses
the gray-box technique to obtain the information on the content of
the upper level cache.

Wong and Wilkes [6] proposed a way to eliminate redun-
dancy by applying a unified LRU algorithm to implement exclusive
caching. They introduced a DEMOTE operation to transfer the
data that was popped from the client cache to the storage cache.
DEMOTE tries to improve the overall hit ratio over inclusive policy.
However, the DEMOTE operation results in high network traffic
and systemoverhead to DEMOTE the evicted pages. Eviction-based
cache placement algorithm [17] is designed to reduce the net-
work resource usage. Eviction-based policy uses a client content
tracking (CCT) table to keep a client’s (high level cache’s) eviction
information, and periodically sends the information to the lower

Download English Version:

https://daneshyari.com/en/article/6873058

Download Persian Version:

https://daneshyari.com/article/6873058

Daneshyari.com

https://daneshyari.com/en/article/6873058
https://daneshyari.com/article/6873058
https://daneshyari.com

