Future Generation Computer Systems I (1NIN) IRE-EEE

Contents lists available at ScienceDirect . =
FiGICIS!

Future Generation Computer Systems
journal homepage: www.elsevier.com/locate/fgcs e

Aging-related performance anomalies in the apache storm stream

processing system

Massimo Ficco *, Roberto Pietrantuono, Stefano Russo

Universita degli Studi della Campania “Luigi Vanvitelli”, Via Roma 29, I-81031 Aversa, Italy
Universita degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy

HIGHLIGHTS

Event stream processing (ESP) has recently emerged as a popular paradigm for implementing high-volume data processing applications.

e Software aging is a phenomenon consisting of the performance degradation, or the increase of the failure rate of a program, which can affects popular
stream processing technology as Apache Storm.
e Software rejuvenation is a means to prevent aging-related failures, hence to mitigate the impact of aging in Apache Storm.

ARTICLE INFO

ABSTRACT

Article history:

Received 2 January 2017

Received in revised form 27 July 2017
Accepted 27 August 2017

Available online xxxx

Keywords:

Software aging

Event stream processing
Apache Storm

Cloud

Event stream processing has recently emerged as a popular paradigm for implementing high-volume
distributed (near-)real time data processing applications. Several open source systems are today available,
supporting the development of such applications, many of which developed with the technologies of
the Apache Software Foundation. These so called stream processors are long-running complex software
systems which may be affected by software aging, a well-known phenomenon among operation engineers,
consisting of a progressive increase in the failure rate or in performance degradation of a software system
over time.

We address the problem of identifying symptoms and sources of software aging in the Apache Storm
event stream processing system; this helps to identify proper strategies to prevent or mitigate anomalous
behaviors in production environments. To this aim, we present an experimental study investigating
aging manifestations in a popular system, namely Apache Storm. Results show that Storm presents
anomalous behaviors in long runs, which prevent some topologies from working continuously. These can
be attributed to software aging, due to Storm internal resource management mechanisms influenced by
the garbage collector and the memory assigned to worker processes. We discuss the aging-related Apache
Storm behaviors, and we experiment rejuvenation actions, showing that they are actually able to remove
them.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The development of ESP applications is supported by so called
distributed real time stream processing systems, i.e., software tech-

Event stream processing (ESP) has recently emerged as a popular
paradigm for implementing high-volume data processing appli-
cations. While traditional data processing models use to persist
data to databases and then execute queries on the stored data,
ESP applications perform complex queries on incoming streams of
data to produce timely results in reaction to events observed in the
processed data [1].

* Correspondence to: Department of Industrial and Information Engineering,
Universita degli Studi della Campania Luigi Vanvitelli, Via Roma 29, 1-81031 Aversa,
Italy.

E-mail address: massimo.ficco@unicampania.it (M. Ficco).

http://dx.doi.org/10.1016/j.future.2017.08.051
0167-739X/© 2017 Elsevier B.V. All rights reserved.

nologies capable of deploying tasks (which are part of the stream
processing application) over a cloud architecture or in general in
a distributed execution environment. Stream processing systems
find application in many fields, including real time analytics, online
machine learning, continuous computation. One powerful such
system is Apache Storm [2], a free and open-source platform, able
to interoperate with lots of technologies belonging to the Apache
ecosystem. Storm is used by many big companies - including
Yahoo! and Twitter - for advanced real time distributed compu-
tation. Stream processing systems usually run for very long time;
therefore, they may be affected by software aging.

Please cite this article in press as: M. Ficco, et al., Aging-related performance anomalies in the apache storm stream processing system, Future Generation Computer

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.08.051.

http://dx.doi.org/10.1016/j.future.2017.08.051
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:massimo.ficco@unicampania.it
http://dx.doi.org/10.1016/j.future.2017.08.051

2 M. Ficco et al. / Future Generation Computer Systems 1 (1111) I1E-111

Software aging is a phenomenon consisting of the performance
degradation or of the increase of the failure rate of a program as
it executes [3]. This is usually due to the accumulation of errors
that leads the system-internal environment to a state in which
such errors are propagated, causing the so-called aging-related
failures [4]. Its common causes are memory leaks, data corruption
accrual, unreleased file locks, round-off errors accumulation, un-
terminated threads, file-space fragmentation. Software aging has
been demonstrated to affect many complex long-running systems,
such as web servers [5], operating systems [6], and even safety-
critical systems [7]. Software aging is usually a consequence of
software faults, referred to as aging-related bugs - a class of faults
may cause failures only after a long period of execution [4].

Software rejuvenation was proposed as a means to prevent or at
least delay aging-related failures, hence to mitigate the impact of
aging [8,9]. Inits simplest form, rejuvenation involves stopping and
subsequently restarting the whole software application or parts
of it, in a preventive manner. This allows removing the accrued
error conditions, by refreshing software internal state. A number of
rejuvenation techniques, at various level of granularity (concern-
ing the entire system or even small parts of it), are now available,
including: garbage collection, flushing of kernel system structure,
preemptive rollback, re-initialization of data structures, memory
defragmentation, micro-reboot, virtual machines-level rejuvena-
tion [3]. Algorithms are also available for the optimal scheduling of
rejuvenation, i.e. for the problem of when to apply rejuvenation [3].

This paper investigates symptoms and effects of software aging
phenomena in the popular stream processing technology Apache
Storm. Along with other compatible software, such as Apache
Kafka (a distributed publish-subscribe messaging system) and
ZooKeeper (a distributed configuration/synchronization system),
Storm is widely used to set up ESP infrastructures. The inves-
tigation is based on experiments with a workload generator as
test application, and measurements are taken to detect aging. The
data gathered about memory consumption, throughput and the
workload itself are analyzed to discover evidences of software
aging afflicting the considered stream processing technology. Be-
sides actually revealing aging phenomena, the experiments allow
to spot potential causes of the observed anomalies, attributable
to the garbage collection and to memory management. This in
turn allows to propose and experiment a software rejuvenation
solution.

The rest of the paper is organized as follows. Section 2 provides
a description of ESP and of the most popular distributed stream
processors. Section 3, describes in more detail the software aging
phenomenon and the problems of detection and rejuvenation. Sec-
tion 4 shows the hardware/software test-bed used for the experi-
ments. Section 5 presents and discusses the experimental results.
Finally, conclusions and directions of future work are presented in
Section 6.

2. Event stream processors

Event stream processors are software platforms capable of ma-
nipulating unbounded streams of data, usually fed through sockets
or publish/subscribe data distribution systems. Typically, messages
are processed as soon as they arrive; parallel computations are
achieved by distributing messages among multiple nodes. Mes-
sages in a stream can be collected within a temporal window to
provide an output that is a function of more messages. The oper-
ation on messages include buffering, join, merge and aggregation.
Several platforms are currently available; the most popular open-
source ones include Tand Storm, Spark Streaming, Samza and Flink,
all developed by the Apache Software Foundation.

According to [2], Storm is: “a free and open source distributed
real-time computation system, which makes it easy to reliably pro-
cess unbounded streams of data, doing for real-time processing what

External
Sources

Fig. 1. A Storm topology.

Hadoop did for batch processing. It can be used with any programming
language”. Various stream sources (e.g., queuing and databases
technologies) can be plugged into Storm. Thanks to the Trident
framework [10], it is also able to perform micro-batching oper-
ations, treating messages in a stream as batches gathered within
temporal windows.

Spark Streaming [11] is not strictly categorized as a stream
processor, as it actually performs micro-batch processing, yet it
works with unbounded data streams. It does not provide latencies
as low as those of Storm, while its performances are comparable to
Trident.

As for Samza [12], the main difference with Storm lies in that
Samza needs YARN [13]. YARN (Yet Another Resource Negotiator)
is a cluster resource manager supporting the separation of the
Hadoop Distributed File System (HDFS) from MapReduce, thus
granting other system access to HDFS. Samza has a parallelism
model which is simpler yet less configurable than Storm. Com-
putation entities in the workflow need to be connected using the
Apache Kafka publish/subscribe messaging system (Section 2.3).

Finally, Flink is a general-purpose platform for distributed
stream and batch data processing [14], capable of running in stan-
dalone mode. It is fully compatible with Hadoop (YARN, HDFS).
According to the benchmarking performed by Yahoo!, Flink and
Storm show similar performance and latency [15].

2.1. Apache Storm

The architecture of the Apache Storm stream processor [16] is
based on the following entities (Fig. 1):

e A Topology is a directed acyclic graph, with nodes repre-
senting computations and edges data exchanges. Nodes are
spouts or bolts;

e Tuples are ordered lists of (untyped) values produced by
nodes. Storm needs to know how to serialize values to
transfer tuples among nodes;

e Streams are unbounded sequences of tuples sent from a node
to another. Apart from the very first nodes in a topology,
which read from the external data sources, any node can
accept more than one stream as input;

e Spouts are stream sources; they listen for incoming mes-
sages from external sources, and forward them, without
performing computation, as their role is solely to emit tuples
to the next type of nodes, i.e., the bolts;

e Bolts are entities which receive tuples, perform computa-
tions, and emit tuples. Tuple transformations include filter-
ing, aggregation, and join;

e Stream grouping defines the way (tasks) the tuples are sent
among bolts and spouts instances.

Please cite this article in press as: M. Ficco, et al., Aging-related performance anomalies in the apache storm stream processing system, Future Generation Computer

Systems (2017), http://dx.doi.org/10.1016/j.future.2017.08.051.

Download English Version:

https://daneshyari.com/en/article/6873059

Download Persian Version:

https://daneshyari.com/article/6873059

Daneshyari.com

https://daneshyari.com/en/article/6873059
https://daneshyari.com/article/6873059
https://daneshyari.com

