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h i g h l i g h t s

• A new vertex centrality method named DPRank is presented by introducing a new transition matrix.
• In DPRank the probability of the vertex i jumps to its neighbor j is proportional to the degree (or out-degree) of the vertex j, instead of the reciprocal

of the degree of vertex i as in PageRank.
• DPRank centrality method takes a bigger environment around a node into account.
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a b s t r a c t

The vertices centrality, as an indicator, aims to find important vertices within a network (undirected or
directed). It is a crucial issue in social network analysis to find important vertices, which has significant
applications in diverse domains. PageRank is the most known algorithm to rank vertices in a directed
network, where a randomwalker always selects next arriving node from its neighborhood uniformly. But
in the real world, a selection or transition is more likely to have ‘‘tendentiousness’’. Thus in this paper,
we propose a new nodes centrality mechanism taking ‘‘tendentiousness’’ into consideration. The main
idea is that, instead of selecting next node uniformly from its neighbors, a ‘‘far-sighted’’ random walker
prefers to move to a neighbor with greater degree (or out-degree for directed network, respectively), so
that the information can be spread rapidly and will not be trapped by dangling nodes (without outgoing
arcs). This new centralitymethod is thus called Degree-Preferential PageRank centrality, short for DPRank
centrality. One can see that, DPRank centrality method gives more accurate evaluation of a node’s ability
by taking not only the immediate local environment around it but also the bigger environment (i.e., its
neighbor’s neighbors) into consideration. This new DPRank centrality method performs very well when
applying it on several data sets including directed and undirected networks. It gives a new perspective of
evaluating a node importance, and is expected to have a promising application in the future.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Social networks permeate social and economic lives and play
a central role in measuring relationships between individuals,
groups, organizations even countries, with vertices representing
individuals or organizations and edges representing relationships
between vertices. In network analysis, the centrality of a node
describes its relative importance in a network. Measuring the
centrality of vertices has been a crucial issue in social network
analysis and has significant use in diverse domains, including dis-
ease spread, transmission of information and logistic distribution.
Applications include identifying the most influential person(s) in a
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social network, the key infrastructure nodes in urban networks, or
the super-spreaders of diseases.

Several centrality methods have been proposed, for example:
degree centrality, closeness centrality [1], betweenness central-
ity [2,3] and so on. Degree centrality is defined as the number of
edges incident upon a vertex. Its simplicity and low computing
complexity are advantages. However, degree centrality has some
limitations, such as: themeasure does not take the global structure
of the graph into consideration. Closeness centrality [1] is defined
as the inverse of the sum of shortest distances to all other vertices
from a focal vertex i, i.e., n−1∑

jdij
, where dij is the shortest distance

between the vertex i and the vertex j reachable from the vertex
i. Closeness can be treated as a measure of how efficiently it
exchanges information with others in a graph. Amain limitation of
closeness is the lack of applicability to graphs with disconnected
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components: two nodes that belong to different components do
not have a finite distance between them. Thus, for disconnected
graphs, a popular approach is to calculate the closeness centrality
in terms of the inverse of the harmonic mean distances between
the nodes, i.e., 1

n−1

∑
j̸=i

1
dij
, where 1

∞
= 0. Betweenness centrality [2]

of a vertex i is equal to the number of all shortest paths that pass
through the vertex i. It was introduced as a measure for quanti-
fying the control of a human on the communication among other
humans in a social network by Linton Freeman. The betweenness
centrality of a vertex v can be represented as:

∑
s̸=v ̸=t∈V

σst (v)
σst

,
where σst is the total number of shortest paths from node s to
node t and σst (v) is the number of those paths that pass through
v. The betweenness centrality may be normalized by dividing it
by the total number of pairs of vertices not including v, which
for directed graphs is (n − 1)(n − 2) and for undirected graphs
is (n−1)(n−2)

2 . Although the betweenness centrality takes the global
graph structure into consideration and can be applied to graphs
with disconnected components, it has limitations. For example,
a great proportion of nodes in a graph generally do not lie in a
shortest path between any two other nodes, and therefore receive
the same betweenness centrality score 0, thus we cannot judge
which one is more central than others. In 2016, Lü et al. [4] gave an
intensive survey for vital nodes identification in complex network,
which gives a systematic review for this problem.

There are a few algorithms have been proposed for directed
graphs. PageRank centrality method [5] is the most popular and
famous one. Starting from a vertex, a walker randomly and uni-
formly selects next node he will move to among its neighbors if
exists, and repeats the process. This process can be specified by
a matrix P called transition matrix, whose element Pij denotes the
probability of transiting from the vertex i to the vertex j in a given
step.

Any probability distribution on a graph G of n nodes can be
represented by a row vector−→π = (π1, π2, . . . , πn) with

∑n
i=1πi =

1, where the ith entry captures the distribution residing at node i.
If the probability of a walker to stay on i does not change at time
t → ∞, this random walk is said to have stationary distribution. In
other words, the stationary distribution does not change over time
and describes the probability that a walker stays at a specific node
after a sufficiently long time. The stationary distribution−→π is then
specified by −→π =

−→π · P, i.e.,

PT
·
−→π

T
=

−→π
T (1)

where−→π
T is the eigenvector of PT corresponding to the eigenvalue

1. The stationary distribution −→π is usually used as a metric of
importance of vertices.

Definition 1. A non-negative square matrix P is called primitive
if there is an integer k such that all the entries of Pk are positive.
It is called irreducible if for any i, j, there is a k = k(i, j) such that
(Pk)ij >0.

Theorem 1 (Perron–Frobenius Theorem [6]). Suppose P is an irre-
ducible non-negative square matrix, then

(1) The spectral radius ρ = ρ(P) of P is a positive real number
and it is an eigenvalue of the matrix P, which is called the Perron–
Frobenius eigenvalue.

(2) The Perron–Frobenius eigenvalueρ is simple. Both right and left
eigenspaces associated with ρ are one-dimensional, and P has a right
(or left) eigenvector corresponding to eigenvalueρ whose components
are all positive.

Based on Theorem 1, the connectedness of an undirected graph
or a strongly connected digraph guarantees that the transition
matrix P is irreducible and stochastic, meaning that the stationary

state of a random walk for such graphs always exists.1 But a
general directed graph is not always strongly connected, so its
transition matrix P is not irreducible, and hence the existence of
the stationary distribution is not guaranteed. Page and Brin [5]
introduced a special transition matrix which is primitive2 (and
hence irreducible), and successfully used it as an important tool
to rank web pages. The (i, j)-entry of the transition matrix can be
interpreted as the probability of a walker jumping from i to j . If
kouti ̸= 0, the probability or the (i, j)-entry is α

Ai,j
kouti

+ (1 − α) 1n , and

if kouti = 0, the probability or the (i, j)-entry is 1
n . In other words,

the PR value of the vertex i at t step is:

PRi(t) = α ·

n∑
j=1

Aji
PRj(t − 1)

koutj
+ (1 − α)

1
n

(2)

whereA is the adjacencymatrix and koutj is the number of arcs going
out from the vertex j. The higher the value of damping factorsα, the
more accurately the topological structure will be preserved.

To improve the accuracy of PageRank, many variants have been
presented. For example, LeaderRank [7] and Pro-PageRank [8],
which will be illustrated detailedly in next section. Liu et al. [9]
developed an improved algorithm with the residence time of
website added in the original algorithm mechanism. Atish Das
Sarma et al. [10] presented fast random walk-based distributed
algorithms for computing PageRank in general graphs and proved
strong bounds on the round complexity. Luo et al. [11] proposed
Time-Weighted PageRank, extending PageRank by introducing a
time decaying factor. An improved PageRank algorithm based on
time feedback and topic similarity was proposed by Yang et al. [12]
in 2016.

In this paper, we propose a new node centrality mechanism.
Compared with PageRank and its variants where a randomwalker
selects next arriving node uniformly from its neighbors, the ran-
domwalker in our strategy is ‘‘far-sighted’’ and prefers to select the
neighbor with greater degree (or greater out-degree for directed
graphs, similarly hereinafter) as the arriving node of next step,
so that the information can be spread rapidly and not trapped
by dangling nodes (without outgoing arcs). In other words, the
probability that the vertex imoves to its neighbor j is proportional
to the degree (or out-degree) of the vertex j. This new centrality
method is thus called Degree-Preferential PageRank centrality, or
simply DPRank centrality. We will present the DPRank centrality
method detailedly in Section 2, and test it on several data sets
(including directed or undirected networks) to show its utilities
in Section 3, then make further quantitative analysis in Section 4;
Conclusions are made in Section 5.

2. Degree-preferential PageRank centrality

Let G = (V , E) be an undirected graph with the vertex set
V (G) = {v1, v2, . . . , vn}, and edge set E = {(vi, vj)}. Its adjacency
matrixA is an n×nmatrixwhereAij = 1 if there is an edge between
the vertex vi and the vertex vj, otherwise Aij = 0. Similarly, if
G = (V , E) is a directed graph, its adjacency matrix A is an n × n
matrix where Aij = 1 if there is an arc from vi to vj, otherwise
Aij = 0. Clearly, the adjacency matrix of an undirected graph is
symmetric, while it is asymmetric for a directed graph.

In an undirected graph, the degree of the vertex vi is the number
of edges incident to it, which is denoted by ki. The neighborhood of
vi is the set of vertices adjacent to it, which is denoted by N(vi).
For a directed graph, the out-neighborhood of the vertex vi is the

1 Actually πi =
ki
2M , whereM is the sum of edges in the graph.

2 For a primitive matrix, we can use the power method to calculate its largest
eigenvalue and corresponding eigenvector.
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