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h i g h l i g h t s

• The continuous interaction model using GME which is used to widen the differences of the fusion probabilities of feature samples.
• The duplicate detection method based on Wootters statistical distance.
• The feature fusion method using weighted median operation.
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a b s t r a c t

The rational division of subsets is a key issue for feature fusion, which often requires that the feature data
units in different subsets can be differentiated easily. Regarding this, this paper uses the transformation
effect betweenmicroscopic andmacroscopic of generalmaster equation towiden the differences of fusion
probability between the feature data units in different subsets. Then, based on the more differentiable
feature data units with widened fusion probabilities, this paper proposes a new dynamic quantum
inspired feature fusionmethod, which uses theWootters statistical distance in probability space to detect
the duplicate feature data and uses the weighted median operation to fuse the detected duplicate feature
data. The experimental results show that the fusion performances on fusion rate, relative completeness,
and conciseness of the proposed feature fusion method are encouraging.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For the heterogeneous feature data after schemamapping, data
redundancy is unavoidable, which will damage the effectiveness
and efficiency of data processing. Regarding this, it is impor-
tant to efficiently reduce data redundancy and obtain the single,
consistent, and clean representation of the existing feature data
through feature data fusion (abbreviated as ‘‘feature fusion’’). So,
the main task of feature fusion is to develop a set of duplicate
detection and feature fusion models which can efficiently improve
the completeness and conciseness of the existing feature data. And
the key issue of this task is to differentiate the feature data units
and divide the source dataset into different subsets based on the
defined relationships between feature data units. Therefore, we
should widen the differences between the feature data units in
different subsets and narrow the differences between the feature
data units in the same subset. The fusion result of the feature data
units in a subset depends on the representations and attributes
(e.g. fusion probabilities) of feature data units.
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In general, it is not easy to define the differentiable relation-
ships between the original feature data units. So, the static feature
fusion methods, which use the feature data units’ initial attributes
to detect and fuse the duplicate feature data, require relatively
more complicate duplicate detection and feature fusion models.
Overall, the classical inference based methods, such as Bayesian
inference [1,2], fuzzy inference [3], and neural network infer-
ence [4], and the classical estimation based methods, such as least
squares [5], Kalman filter [6], and particle filter [7], are static fea-
ture fusion methods. Recently, the classical based fusion methods
on different types of feature data, such as the multi-focus image
fusion method using dense scale invariant feature transform [8],
the multi-modal medical image fusion method using the inter-
scale and intra-scale dependencies [9] and the edge preserved im-
ages fusionmethod usingmulti-scale toggle contrast operator [10],
the classical based fusion methods used for other technical fields,
such as the evidence-based fusion method used for 3D model
search [11] and the motion blob based fusion method used for
traffic scene surveillance [12], and the quantum inspired feature
fusion method based on maximum von Neumann entropy [13] are
also static fusion methods.

The dynamic feature fusion methods use the more differen-
tiable attributes after interaction to detect and fuse the duplicate
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feature data, and require relatively simpler duplicate detection and
feature fusionmodels but additional interaction process. However,
the already developed dynamic feature fusion method [14] just
discusses the case where the interaction process is discrete and
Markovian. That is to say, the interaction component between
two feature data units at time t is determined by the one at time
t ′(t ′ < t) only. But if the interaction process is continuous and
non-Markovian, then a new interaction model is needed, which
can govern the discrete and continuous processes. Generally, the
continuous case can be sharpened into the discrete case, and
the discrete case is just a special continuous case. Motivated by
this, this paper focuses on two aspects: (1) establishing a general
interaction model which is continuous and non-Markovian and
can better differentiate the feature data units in different subsets;
(2) developing the corresponding dynamic quantum inspired fea-
ture fusion method which can better improve the (relative) com-
pleteness and conciseness of the source dataset with relatively
simpler detection and fusion models.

The general master equation (GME) is an entity one meets
with on the wayside in one’s journey from the microscopic to
the macroscopic level of the dynamics of large systems in statis-
tics mechanics [15]. Essentially, GME descripts the continuous
transformation process from microscopic to macroscopic, and is
consistent to the above presented continuous interaction process.
Here, the microscopic level is the initial states of feature data
units where the feature data units are discrete and are difficult
to be differentiated. The macroscopic level is the final states of
feature data units after interaction where the differences between
the feature data units in different subsets are widened. So, it is
reasonable to use GME for feature fusion. The contributions of
this paper are the continuous interaction model governed by GME
and the corresponding detection and fusion models, which have
important implications to efficiently reduce data redundancy and
obtain the concise representation of the existing feature data.
Compared to the classical inference based and estimation based
feature fusionmethods, the static quantum inspired feature fusion
methods [13,16], and the dynamic and discrete quantum inspired
feature fusion method [14], the proposed feature fusion method is
quantum inspired, dynamic, and continuous.

To establish the interaction model using GME, the key step
is to define the transition function and the transition probability
between feature data units. For the continuous interaction process,
we take the Gaussian function instead of the δ function as the
transition function because the Gaussian function is continuous
and topological isomorphic compared to the δ function. Usually,
the δ function is suitable for the discrete interaction process. As
shown in Fig. 1, the Gaussian function is the expansion of the δ

function where the indefinite integrations of these two functions
must be equal to 1. On the contrary, the Gaussian function in
Fig. 1 can be sharpened into the δ function. Certainly, besides the
Gaussian function, more continuous transition functions, which
are topological isomorphic with the δ function, can be studied
in the future. The transition probability of a feature data unit is
calculated according to the initial fusion probabilities of all feature
data units and the transition function which directs the transition
process of the resultant transition probabilities as a whole.

Due to the effect of quantum parallelization [17], the quantum
inspired feature fusion methods, where the feature data units are
represented as the basic quantum states, quantum phases, and
density matrixes, have potential high efficiency. Here, inspired by
the idea of lattice structure [17], we quantize feature data unit,
i.e., feature samples, into basic quantum states. Then, using the
quantum inner product operation,we calculate the linkingweights
between different quantized feature samples, and thus obtain the
initial fusion probabilities of all feature samples. The subsequent
fusion probabilities of feature samples at different collision and

Fig. 1. Expanding the δ function into the Gaussian function.

reaction steps can be deducted according to the continuous transi-
tion function. When the interaction steps reach the given thresh-
old, the interaction process is completed and the differences of
fusion probability between feature samples are widened. Based
on the final fusion probabilities of feature samples, we calculate
the Wootters statistical distances in probability space [16,18] be-
tween feature samples and take them as the basis of duplicate
detection. Then, according to the standard deviation of Wootters
statistical distance, the source dataset is divided into different sub-
sets incrementally. All the quantized feature samples in a subset
will be fused into a new object quantized feature sample using
the weighted median operation for quantum bits (qubits). Fig. 2
shows the continuous feature fusion process using general maser
equation.

In Section 2, the interaction model using GME is presented.
Section 3 presents the duplicate detection models based onWoot-
ters statistical distance and the feature fusion models using the
weighted median operation. The related experimental results are
shown in Section 4. The conclusions are drawn at the end of this
paper.

2. Interaction model using GME

A feature dataset is defined as X = [s1, s2, . . . , si, . . . , sn]T
which contains n feature samples. The feature sample si is defined
as si = (x1i , x2i , . . . , xji, . . . , xLi ) (xji ∈ X j), where the included
feature elements x1i , x

2
i , . . . , x

j
i, . . . , x

L
i are extracted from L dif-

ferent feature vectors X1, X2, . . . , X j, . . . , X L. The feature element
xji is quantized as the quantum state with M qubits, i.e., |xji⟩ =

|b1i,j · · · b
k
i,j · · · b

M
i,j⟩, whereM is equal to the number of unique values

in the feature elements’ interval [a, b]. According to the position
of xji in the unique value sequence of [a, b], the qubit |bki,j⟩ is
equal to |0⟩ or |1⟩. So, m (1 ≤ m ≤ M) possible values in
the unique value sequence mean that m qubits of |1⟩ locate in
|b1i,j · · · b

k
i,j · · · b

M
i,j⟩, where, the indexes of the m values are equal

to the ones of the m qubits. The quantum representation of the
feature sample si is constituted by the quantum representations of
the included feature elements and contains ML qubits, i.e., |si⟩ =

|b1i, 1 · · · bMi, 1 · · · b1i,j · · · b
k
i,j · · · b

M
i,j · · · b

1
i,L · · · bMi,L⟩. Table 1 shows the

definitions of the main notations in this paper.
Based on the quantum representations of feature samples, the

linking weight between two quantized feature samples si and si′
is calculated according to the corresponding equivalent qubits
between them and is equal to their inner product.

lw(si, si′ ) = ⟨si|si′⟩ (1)

The linking network (shown as Fig. 3) is constructed by the feature
samples, which are taken as the linking nodes, and the linking
weights between them. Based on the linking network, the migra-
tion probability from si to si′ is time-independent and is defined
as the linking weight between si and si′ in relation to the linking
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