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a b s t r a c t

Streamline patterns and their local and global bifurcations in a two-dimensional planar and axisymmetric
peristaltic flow for an incompressible Newtonian fluid have been investigated. An analytical solution for
the stream-function is found under a long-wavelength and low-Reynolds number approximation. The
problem is solved in a moving coordinate system where a system of nonlinear autonomous differential
equations can be established for the particle paths. Local bifurcations and their topological changes are
inspected using methods of dynamical systems. Three different flow situations manifest themselves:
backward flow, trapping or augmented flow. The transition between backward flow to trapping corre-
sponds to a bifurcation of co-dimension one, in which a non-simple degenerate point changes its stability
to form heteroclinic connections between saddle points that enclose recirculating eddies. The transition
from trapping to augmented flow is a bifurcation of co-dimension two, in which heteroclinic saddle
connections of adjacent waves coalesce below wave troughs. The coalescing of saddle nodes on the lon-
gitudinal axis produces a degenerate point with six heteroclinic connections (degenerate saddle). As the
parameter is increased, the degenerate saddle bifurcates to saddles nodes which lift off the centerline.
These bifurcations are summarized in a global bifurcation diagram. Theoretical results are compared with
the experimental data.

Published by Elsevier B.V.

1. Introduction

Peristaltic flow refers to the transport of fluid inside a channel
or tube by action of the wall. It is one of the major mechanisms for
fluid transport in many biological systems: it is involved in swal-
lowing food through the esophagus, movement of chyme in the
gastro-intestinal tract, in the ductus efferentes of the male repro-
ductive system, transport of lymph in the lymphatic vessels and in
vasomotion of small blood vessels such as arterioles, venules and
capillaries. Peristaltic pumps also work on the same principle, and
are used for industrial and medical applications. They can be used
to transport corrosive or very pure materials so as to prevent direct
contact of the fluid with the pump’s internal surfaces.

The dynamics of fluid transport by peristaltic motion of con-
fining walls has received some attention in the literature [1–4].
Early analyses of peristaltic motion were simplified by introduc-
ing approximations such as periodic, sinusoidal wave trains in
infinitely long tubes or channels, small wall slopes, or low flow
Reynolds number. The main objectives were to characterize the
basic fluid mechanics of the process and, in particular, to find the
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pressure gradients that are generated by the wave, the flow behav-
ior in the tube or channel due to peristalsis, and the conditions for
trapping or reflux.

Shapiro et al. [1] and Weinberg et al. [5] investigated peri-
staltic transport by means of an infinite train of peristaltic waves
for small Reynolds number and long-wavelength; comparisons
between analytical and experimental results were made. Pumping
characteristics were investigated for different geometrical param-
eters. The phenomenon of trapping was studied; trapping refers to
the situation where under certain parameter values an internally
circulating bolus of fluid, lying about the axis, is transported with
the wave speed. Siddiqui and Schwarz [4] analyzed the mechan-
ics of peristaltic pumping for a non-Newtonian fluid through an
axisymmetric conduit. A perturbation method in terms of a small
wavenumber was applied to solve the problem, and their results
showed the presence of trapping under certain conditions. More-
over, it was found that trapping on the longitudinal axis could break
up for large positive flow rates; two lifted eddies are maintained
below the wave crest in which part of the fluid flows through the
center. This behavior was also referred to in the work of Pozrikidis
[6], through the imposition of a pressure gradient and using a
boundary integral method for Stokes flow.

Peristaltic flow manifests interesting topological changes when
parameters are changed, implying that bifurcations can occur. The
objective of this work is to exploit methods of dynamical systems
to unveil the form and nature of these bifurcations. To describe the
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Fig. 1. Geometry of the periodic wave.

fluid dynamics using local properties of streamlines, a Hamiltonian
system is considered in which streamlines coincide with parti-
cle trajectories. Thus, ẋ = u(x, y) = ∂ /∂y and ẏ = v(x, y) = −∂ /∂x
where (x, y) are the coordinates, (u, v) are the velocity components
and  is the stream-function. A stagnation point, where (u, v) = 0,
is known in dynamics as a critical point, and for two-dimensional
incompressible flow there are two non-degenerate possibilities: if
the point is a center, the fluid mechanics interpretation is a vortex
or eddying motion, while a saddle represents a point of stagnation
where the separatrices are the dividing streamlines. This approach
to qualitatively describe streamline patterns is by no means new;
for basic ideas see for example Hunt et al. [7] and the review paper of
Perry and Chong [8]. Further results from this point of view on fluid
mechanics can be found in Refs. [9–13]. They used a Taylor expan-
sion of the velocity field and then the coefficients of the series were
considered as bifurcation parameters.

Hartnack [10] investigated the streamline patterns and their
bifurcations in a two-dimensional incompressible viscous flow near
a fixed wall. Normal form theory was used in the local analysis
of near wall streamlines. Changes of the streamline patterns near
degenerate critical points were investigated. Brøns and Hartnack
[11] studied the streamline patterns near simple degenerate points
away from boundaries. Topological classifications were obtained in
terms of the coefficients of the normal forms. Gürcan and Deliceoğlu
[12] studied two-dimensional flows with double symmetry away
from boundaries. Classifications of the flow structures were made.

It is the purpose of the present paper to study streamline
patterns of two-dimensional peristaltic flow and bifurcations of
their critical points. Plane and axisymmetric geometry will be
considered. A solution for the stream-function will be presented.
Local and global bifurcations of critical points are investigated up
to co-dimension two. Theoretical results are compared with the
experimental data available in the literature.

2. Plane peristaltic flow

2.1. Flow equations and boundary conditions

Consider peristaltic flow of an incompressible Newtonian fluid
in a two-dimensional channel with flexible walls. In a Cartesian
coordinate system (X∗, Y∗), the channel walls are shown in Fig. 1,
and given by

H∗(X∗ − ct∗) = Rw − a
{

1 − cos2
(
�
X∗ − ct∗
�

)}
,

where Rw is total wave height, a is the wave amplitude, � is the
wavelength and c is the wave speed. The motion in a moving frame
of reference (x∗, y∗) moving with velocity c of the wave on the walls
of the channel is studied. In the wave frame, the motion remains
steady. The transformation from a fixed frame to the moving frame
are related by x∗ = X∗ − ct∗, y∗ = Y∗; and the velocity components
by u∗ = U∗ − c and v∗ = V∗. The dimensional equation of the wall at

the moving frame is

h∗(x∗) = Rw − a
{

1 − cos2
(
�
x∗

�

)}
.

The dimensional form of the governing equations for the planar
problem in the moving frame of reference is

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0,

v∗ ∂v
∗

∂y∗ + u∗ ∂v∗

∂x∗ = − 1
�

∂p∗

∂y∗ + �
[
∂2v∗

∂y∗2
+ ∂2v∗

∂x∗2

]
,

v∗ ∂u
∗

∂y∗ + u∗ ∂u∗

∂x∗ = − 1
�

∂p∗

∂x∗ + �
[
∂2u∗

∂y∗2
+ ∂2u∗

∂x∗2

]
,

where � is the density, � is the kinematic viscosity and p∗ is the
pressure in the moving frame.

Dimensionless quantities are defined as x ≡ �x∗/� and y ≡
y∗/Rw for the spatial coordinates. For the velocities u ≡ u∗/c and
v ≡ v∗/�c, and for the pressure p ≡ �Rwp∗/�c. Two geometrical
dimensionless parameters present themselves in this formula-
tion, the amplitude ratio 	 ≡ a/Rw , and the wavenumber � ≡
�Rw/�. The Reynolds number is defined as Re ≡ Rw c/�. By intro-
ducing the dimensionless stream-function  , where u = ∂ /∂y,
v = −∂ /∂x, which automatically satisfies the continuity equation,
and eliminating the pressure from the Navier–Stokes equations by
cross-differentiation, the governing equations are reduced to

�Re[ y∇2 x − x∇2 y] = ∇2(∇2 ), (1)

where subscripts x and y denote partial differentiation with respect
to that variable. The modified Laplacian is given by∇2 ≡ �2∂2/∂x2 +
∂2/∂y2. This is a stream-function formulation of the flow equations.

The dimensionless equation of the wall at the fixed frame is

H(X − t) = 1 − 	{1 − cos2(X − t)}, (2)

where t ≡ c�t∗/�, X ≡ �X∗/�, Y ≡ Y∗/Rw . The dimensionless equa-
tion of the wall in the moving frame is

h(x) = 1 − 	{1 − cos2 x}. (3)

where 0< 	 < 1, is the amplitude ratio or occlusion. The dimen-
sional instantaneous flow rate in the fixed frame is given by

Q ∗ =
∫ H∗

0

U∗ dY∗. (4)

Using the transformation between frames for coordinates and
velocities, and by integration of Eq. (4) gives

Q ∗ = q∗ + ch∗, (5)

where q∗ ≡
∫ h∗

0
u∗ dy∗ is the flow rate in the moving coordinate sys-

tem and is independent of time. The dimensional time-mean flow
over a period T at a fixed X-position is defined as

Q̂ ≡ 1
T

∫ T

0

Q ∗ dt∗. (6)

Introducing Eq. (5) into Eq. (6), and using the dimensionless flow
rates as q ≡ q∗/cRw and Q ≡ Q̂/cRw ,

Q = q+
(

1 − 	

2

)
. (7)

Note that the flow rate at the moving coordinate system is also

q =
∫ h

0
(∂ /∂y) dy =  (h) − (0). The boundary conditions for this

problem are the no-slip condition at the wall, and symmetry con-
ditions along the centerline of the channel. The flow rate relation
for the stream-function in the moving frame is selected as zero at
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