
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Non-standard pseudo random number generators revisited for GPUs
Christoph Riesinger a,∗, Tobias Neckel a, Florian Rupp b

a Department of Informatics, Technical University of Munich, Munich, Germany
b Department of Mathematics and Science, German University of Technology in Oman, Muscat, Oman

h i g h l i g h t s

• Three methods to generate normally distributed pseudo random numbers which have properties making them interesting for an implementation on
the GPU.

• Established GPU random number libraries are outperformed by a factor of up to 4.53, CPU libraries by a factor of up to 2.61.
• One of the three methods has never been considered for GPUs before but delivers best performance on many benchmarked GPU architectures.

a r t i c l e i n f o

Article history:
Received 26 February 2016
Received in revised form
5 October 2016
Accepted 17 December 2016
Available online xxxx

Keywords:
Fine-grain parallelism and architectures
GPU
Pseudo random number generation
Ziggurat method
Rational polynomials
Wallace method

a b s t r a c t

Pseudo random number generators are intensively used in many computational applications, e.g. the
treatment of uncertainty quantification problems. For this reason, the right selection of such generators
and their optimization for various hardware architectures is of big interest.

In this paper, we analyze three different pseudo random number generators for normally distributed
random numbers: The Ziggurat method, rational polynomials to approximate the inverse cumulative
distribution function of the normal distribution, and the Wallace method. These uncommon generators
are typically not the first choice when it comes to generation of normally distributed random numbers.
We investigate the properties of these three generators and show how their properties can be used for an
efficient high-performance implementation on GPUs making these generators a good alternative on this
type hardware architecture.

Various benchmark results show that our implementations outperform well established normal
pseudo random number generators on GPUs by factors up to 4.5, depending on the utilized GPU
architecture. We achieve generation rates of up to 4.4 billion normally distributed random numbers per
second per GPU. In addition,we show that our GPU implementations are competitive against state-of-the-
art normal pseudo random number generators on CPUs by being up to 2.6 times faster than an OpenMP
parallelized and vectorized code.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Randomnumbers play a vital role in numerous areas of Compu-
tational Science and Engineering (CSE). They are frequently used
in methods for uncertainty quantification (such as Monte Carlo
sampling, realization and approximation of stochastic processes),
in performance modeling but also for other applications such as
cryptography. One popular way to generate random numbers on
computers are pseudo random number generators (PRNGs) [1]. In
contrast to real random number generators which rely on some

∗ Corresponding author.
E-mail addresses: riesinge@in.tum.de (C. Riesinger), neckel@in.tum.de

(T. Neckel), florian.rupp@gutech.edu.om (F. Rupp).

physical process (e.g. radioactive decay), PRNGs follow a determin-
istic rule to generate random numbers [2,3]. Thus, such random
numbers are not entirely random but fulfill certain statistical cri-
teria [4].

There are many PRNGs for different statistical distributions
(uniform, normal, exponential, etc.) with different capabilities,
properties, and characteristics [5–7]. In general, PRNGs produce
uniformly distributed random numbers (in the following called
uniform random numbers and analogously normal, exponential,
etc. random numbers). If a different distribution is required, uni-
form random numbers have to be altered to the desired target dis-
tribution by special transformation operations. Most of such trans-
formation operations try to approximate the inverse cumulative
distribution function (CDF) of the aimed distribution. Such combi-
nations of a uniform PRNG and a transformation function are also

http://dx.doi.org/10.1016/j.future.2016.12.018
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.12.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:riesinge@in.tum.de
mailto:neckel@in.tum.de
mailto:florian.rupp@gutech.edu.om
http://dx.doi.org/10.1016/j.future.2016.12.018

2 C. Riesinger et al. / Future Generation Computer Systems () –

called PRNG, even if it is a two stage process; but exceptions exist
where a PRNG directly produces random numbers of, e.g., normal
distribution avoiding the generation of uniform random numbers.

OnCPUs, there is alreadymuch experiencewith PRNGsof differ-
ent distributions available in literature, in particular with respect
to the performance. In recent years, new processor architectures
such as GPUs, the Intel Xeon Phi, or the PEZY accelerator1 gained
huge relevance in HPC. Occasionally, such accelerators have very
different performance values compared to CPUs such as degree of
parallelism, bytes per flop ratio, memory bandwidth, instruction
throughput, context switching overhead, and many more. Thus,
experiences made for CPUs cannot be directly generalized to ac-
celerators, in particular not to GPUs. In this paper, we focus on
three PRNGs for non-uniform distribution which are not the first
choice on CPUs but which have interesting properties for GPUs.
Reasons why such non-standard generators are not attractive for
CPUs can be hard implementations, high complexity, or just bad
performance due to immense computational intensity. Such prop-
erties do not have to be disadvantages on GPUs or can even be ad-
vantageous. The three PRNGs discussed in this paper are the Zig-
gurat method, rational polynomials approximating the inverse CDF
(in the following just called rational polynomials), and the Wallace
method. We investigate the characteristics of these three methods
with respect to suitability on GPUs.

Since we need normal random numbers for our application
(solving random ordinary differential equations (RODEs) [8,9]), we
focus on this particular distribution. Nevertheless, the three non-
standard PRNGs which are subject to this paper are not limited to
normal distribution but can also generate random numbers of al-
ternative distributions.When the non-standardmethods are intro-
duced in detail, we also briefly depict how different distributions
can be achieved. Statistical properties of PRNGs can be experimen-
tally checked by test batteries like Diehard [10] or TestU01 [11,12].
Investigating them is, however, not within the scope of this pa-
per. Instead, we concentrate on implementation aspects, optimiza-
tion for GPUs, and exploitation PRNGs’ properties for better per-
formance. This paper uses CUDA terminology (thread, block, grid,
warp, occupancy, throughput) when it comes to GPU aspects. In
addition, only CUDA-capable GPUs are used for performance mea-
surements. But, all ideas presented in this paper also work with
OpenCL and GPUs from vendors other than NVIDIA without any
limitations.

The remainder of this paper is structured as follows: Section 2
lists relevant literature in the context of the non-standard PRNGs
and implementation approaches on different hardware architec-
tures. An introduction to the non-standard PRNGs together with
ways how to exploit their properties for GPUs is given in Section 3.
In Section 4, benchmark and profiling results are presented as well
as a comparison with state-of-the-art CPU and GPU libraries for
random numbers. Section 5 concludes this paper by summarizing
the main achievements of our GPU implementations.

2. Related work

In this section, we briefly present literature which introduces,
discusses, and adapts (e.g. for special hardware architectures) the
three non-standard PRNGs used in this paper. A high-performance
implementation of uniform generators, especially for GPUs, can be
found in [13].

The Ziggurat method was first introduced in [14]. Over time, it
was improved in terms of simplicity and performance which led
to the most recent version in [15]. This is also the version that we

1 http://www.pezy.co.jp/en/index.html.

use for our GPU implementation. Detailed discussions concerning
the statistical properties of the Ziggurat method can be found in
[16,17]. There are several attempts to implement the Ziggu-
rat method on special purpose hardware, mainly on Field Pro-
grammable Gate Arrays (FPGAs). Examples can be found in
[18–20]. All of these attempts realize a straight-forward im-
plementation neglecting the special properties of the Ziggurat
method. An extensive survey on several, also massively parallel
architectures is done by Thomas et al. [21] where the Ziggurat
method turns out to be the best choice on CPUs but not on GPUs.
This result is not in accordance with our results presented in this
paper. The idea of a runtime/memory trade-off as suggested in Sec-
tion 3.1 is also seized by Buchmann et al. [22] where it is used for
their cryptosystem application. Their implementation is limited to
a normal distribution for integers.

Numerous examples exist to directly approximate the inverse
normal CDF, e.g. in [23,24]. Wichura [25] suggests a set of
coefficients for an approximating rational polynomial which we
also use in this paper. An alternative coefficient set with different
properties in terms of error bounds for specific regions of R is
proposed by Beasley et al. [26].

TheWallace method was first presented in [27] with some very
useful comments in [28]. The basis for our GPU implementation
originates from the vectorized version of Brent [29] provided in
the library rannw [30]. There is also a FPGA implementation of the
Wallace method developed by Lee et al. [31].

In a former paper, we discussed and compared PRNG imple-
mentations on GPUs [32] where we focused on popular PRNGs for
CPUs such asMersenne Twister [33] or the Box/Mullermethod [34]
which are not necessarily the best choice for GPUs. The Ziggurat
method for GPUs was already discussed intensively by us in [35].
This paper augments our previous work by extended explanations
how the Ziggurat is set up and by additional non-standard PRNGs
with interesting properties especially for GPUs.

3. Methods

In this section, we present three non-standard PRNGs. The
Ziggurat method in Section 3.1 and rational polynomials in
Section 3.2 are transformation functions which approximate the
inverse normal CDF. Hence, they require input from an uniform
PRNG. The Wallace method in Section 3.3 directly generates
normal random numbers and does not depend on any other PRNG.

3.1. Ziggurat method

The Ziggurat method is a rejection method which realizes
the transformation from uniform to normal distribution in the
best case with only one table lookup and one multiplication.
It approximates the area under the normal probability density

function (PDF) f (x) = e−
x2
2 for x ≥ 0 using N vertically stacked

strips where N can be an arbitrary number ≥ 2. An approximation
for N = 8 is depicted in Fig. 1. N − 1 of the strips have rectangular
shape. These rectangles Ri, i = 0, . . . ,N−2 have upper-left corners
(0, yi) and lower-right corners (xi+1, yi+1), where f (xi) = yi and
0 = x0 < x1 < · · · < xN−1 = r . The last strip RN−1 = RB is
the base strip and is hatched from bottom left to top right in Fig. 1.
It does not have rectangular shape but is bounded at x = 0 from
the left, by f (x) from the right, at y = 0 from the bottom, and at
y = yN−1 from the top. Each strip (the rectangles and the base
strip) has the same area v. Every rectangle Ri, i = 0, . . . ,N − 2 is
further subdivided in three subregions: central region, tail region,
and cap region. While central regions are not hatched, tail regions
are hatched with diagonal crosses, and cap regions are hatched
frombottom right to top left in Fig. 1. Central regions lie completely

http://www.pezy.co.jp/en/index.html

Download English Version:

https://daneshyari.com/en/article/6873223

Download Persian Version:

https://daneshyari.com/article/6873223

Daneshyari.com

https://daneshyari.com/en/article/6873223
https://daneshyari.com/article/6873223
https://daneshyari.com

