
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

The home-forwarding mechanism to reduce the cache coherence
overhead in next-generation CMPs
Gabriele Mencagli ∗, Marco Vanneschi, Silvia Lametti
Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, I-56127, Pisa, Italy

h i g h l i g h t s

• The overhead of cache coherence protocols has been evaluated.
• Specific requirements for an efficient runtime support have been identified.
• The home-forwarding mechanism has been described.
• A runtime support for fine-grained parallelism has been implemented.
• Our approach has been evaluated through benchmarks on the TILEPro64 CMP.

a r t i c l e i n f o

Article history:
Received 28 February 2016
Received in revised form
27 December 2016
Accepted 7 January 2017
Available online xxxx

Keywords:
Parallel processing
Cache coherence
Fine-grained parallelism
Chip Multi-Processors

a b s t r a c t

On the road to computer systems able to support the requirements of exascale applications, Chip Multi-
Processors (CMPs) are equipped with an ever increasing number of cores interconnected through fast
on-chip networks. To exploit such new architectures, the parallel software must be able to scale almost
linearly with the number of cores available. To this end, the overhead introduced by the run-time system
of parallel programming frameworks and by the architecture itself must be small enough in order to
enable high scalability also for very fine-grained parallel programs. An approach to reduce this overhead is
to use non-conventional architecturalmechanisms revealing useful when certain concurrency patterns in
the running application are statically or dynamically recognized. Following this idea, this paper proposes
a run-time support able to reduce the effective latency of inter-thread cooperation primitives by lowering
the contention on individual caches. To achieve this goal, the new home-forwarding hardware mechanism
is proposed and used by our runtime in order to reduce the amount of cache-to-cache interactions
generated by the cache coherence protocol. Our ideas have been emulated on the Tilera TILEPro64 CMP,
showing a significant speedup improvement in some first benchmarks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in microprocessor design have been reflected
in high-performance computing architectures that rely on Chip
Multi-Processors (CMPs) as basic building blocks. According to the
new interpretation of Moore’s law, the number of cores per chip
will continue to double every two years, and prototypal architec-
tures with thousands of cores per chip (like Adapteva Epiphany
with up to 4,096 cores) are now becoming reality [1]. Future
CMPs must be equipped with high-speed on-chip interconnec-
tion networks (like optical networks [2]) and connected to very

∗ Corresponding author. Fax: +39 0502212726.
E-mail addresses:mencagli@di.unipi.it (G. Mencagli), vannesch@di.unipi.it

(M. Vanneschi), lametti@di.unipi.it (S. Lametti).

high-bandwidth 3D-stacked memory sub-systems. Along this line,
hardware cache coherence (CC), which is still an expected feature
of future CMPs for both technical and legacy reasons [3], still needs
new advancements to support such architectures with the neces-
sary scalability.

According to this future path, the gap between parallel
architectures and parallel programming maturity tends to widen.
To exploit at best the hardware potential, the performance of
parallel software must scale almost linearly with the number of
cores of next CMPs. This goal poses serious challenges in the design
of the run-time support of parallel programming frameworks. In
fact, from one side the exploitation of such large set of cores
requires that a high number of concurrent activities (tasks) can
be statically or dynamically identified. On the other side, good
scalability can be achieved as long as the tasks computation time
(granularity) is sufficiently large than the run-time overhead. The

http://dx.doi.org/10.1016/j.future.2017.01.009
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.01.009
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:mencagli@di.unipi.it
mailto:vannesch@di.unipi.it
mailto:lametti@di.unipi.it
http://dx.doi.org/10.1016/j.future.2017.01.009

2 G. Mencagli et al. / Future Generation Computer Systems () –

capability of executing small tasks with frequent synchronizations
in an efficient way is prerogative of run-time supports targeting
fine-grained parallelism [4].

Several papers have presented some solutions to enable fine-
grained parallelism by reducing the run-time system overhead
using lock-free data structures for low-latency thread coopera-
tion [5], by improving load balancing using sophisticated work
stealing techniques [6], or by supporting autonomic features [7–9].
We claim that the low-level sources of architectural overhead in
CMPsmust be formally analyzed and some countermeasures prop-
erly designed by introducing specific architectural mechanisms di-
rectly exploitable by the run-time system. As suggested in Ref. [3],
the memory hierarchy andmore specifically the cache sub-system
is one of the best candidate for such study.

One of the approaches described in recent research papers
consists in configuring the CC mechanisms in such a way as
to exploit a specific sharing pattern of data and reduce the CC
traffic. Examples are described in Refs. [10,11], where the authors
have designed hardware components able to detect sharing
patterns between cores by dynamically analyzing the sequence
of memory accesses. The goal is to enforce hybrid configurations
of invalidation-based and update-based CC protocols in order to
reduce the number of messages exchanged among caches.

Our approach has some analogies with such previous work. Our
goal is to design a runtime for structured parallel programs [12],
also known as Algorithmic Skeletons [13] and recently as parallel
patterns [14]. They are based on the instantiation and composition
ofwell-knownparallelism forms (e.g., farm,map, pipeline, stencils,
reduce, divide&conquer) with a precise cooperation semantics.
Our fundamental observation is that the run-time support for
such patterns can be designed with few base synchronization
mechanisms. This allows us to orchestrate the CC protocol in
such a way as to optimize the communication overhead, which is
precondition to enable scalable fine-grained parallelism.

This work extends the paper published in Ref. [15] by providing
the following specific contributions:

• the cost of CC protocolswill be described and evaluated through
benchmarks on CMPs;

• we will list the requirements for an efficient run-time support.
Then, wewill introduce the home-forwardingmechanism, which
allows us to reduce communications among caches in the
implementation of parallel patterns;

• we will describe a run-time support that matches our
requirements;

• we will evaluate experimentally our approach through some
benchmarks on the Tilera TILEPro64 CMP [16].

The organization of this paper is the following. In the next
section we point out the motivation of our work. Section 3 will
review some related works, and Section 4 will describe the nature
of the CC overhead. Section 5 will give the basis for an efficient
runtime design, and Section 6 will describe a runtime that meets
our design principles. Section 7 will evaluate our runtime on some
parallel programs. Finally, Section 8 will conclude this paper by
outlining our future research directions.

2. Motivation

Any run-time support needs proper mechanisms for synchro-
nizing processing elements (briefly, PE).1 We can distinguish be-
tween two basic synchronization problems: symmetric synchro-
nization for mutual exclusion, and asymmetric synchronization for
event notification.

1 In this paper we use the generic term processing element to denote the basic
unit of parallelism at the architectural level (e.g., a core of a CMP).

The first problem is solved by adding lock/unlock primitives
around the critical sections. In the second problem a precedence
relation must be forced. As an example, let PEi and PEj be two
PEs executing the sequences of operations {p; c1; q} and {r; c2; s},
and suppose that the execution of c1 must precede the execution
of c2. This can be expressed as follows: {p; c1; notify(go); q} and
{r; wait(go); c2; s}, where notify and wait generate and wait for
an abstract event, i.e. a pure one-to-one synchronization. The wait
primitive implies busy-waiting that can be implemented as a
spin-loop on a shared boolean flag, or as an I/O inter-processor
communication. In general, atomic instructions are not needed to
perform the event notification/reception.

This distinction is important. Asymmetric synchronization is
predominant in the design of run-time supports for structured
parallel programs [12,13,17]. Such programs are characterized
by the fact that logically the ownership of data structures is
transferred among threads according to a producer–consumer
scheme. As an example, in a farm pattern an emitter functionality
is responsible to dispatch tasks (data items) to a set of workers by
transferring the ownership of them. The availability of a new task
can be notified using asymmetric synchronization, and the emitter,
once transferred the ownership, no longer needs the data item
forwarded. Analogously, in a map pattern a data structure (often a
large array or a matrix) is scattered in partitions whose ownership
is assigned to a set of independent workers.

The producer–consumer scheme can be optimized in terms of
CC actions. In particular, we can note that:

• once the ownership has been transferred, some unnecessary CC
interactions (e.g., read requests and invalidations) can be raised
by operations performed by the owner, because some cache
lines of the data might still be in the private caches of the PE
that held the data;

• messages between caches not only increase the latency of
read/write operations, but also generate contention among
caches. In fact, caches act as servers, i.e. they receive requests
from other caches and reply to them. High contention means
long waiting times, and the real (under-load) latency of
read/write operations experienced by a program can hamper
scalability with high degrees of parallelism.

Optimizations aimed at reducing CC messages and contention
can be applied to the run-time support of structured parallel
programs, which can be based on event notification as the main
synchronization mechanism used by threads. This will be the goal
of our approach.

3. Related works

The evaluation of the CC overhead onmultiprocessors andmore
recently on CMPs has been studied in several research papers. In
Refs. [18–21] an evaluation has been carried out on systems with
invalidation-based CC. The results have been obtained empirically
through benchmarks aimed at evaluating the base latency of
read operations in different CC configurations. In Section 4.2, we
performed similar benchmarks on the Intel Sandy Bridge and the
TILEPro64 CMPs. In addition, we proposed an analysis of the w
latency in the case of synchronous writes (with memory fences in
the case ofWMOmachines), which are used in inter-process/inter-
thread cooperationmechanisms. In other papers the CC evaluation
has been performed by adopting several simplifications on the
workload model, in order to predict analytically the overhead by
using tools such asMarkov chains [18,22], Generalized Timed Petri
Nets [23] and Queuing Networks [24]. In this paper we are not
interested in the exact quantification of the CC overhead, but rather
in strategies to design the runtime system in order to reduce both
base latency and contention.

Download English Version:

https://daneshyari.com/en/article/6873224

Download Persian Version:

https://daneshyari.com/article/6873224

Daneshyari.com

https://daneshyari.com/en/article/6873224
https://daneshyari.com/article/6873224
https://daneshyari.com

