
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Locality based warp scheduling in GPGPUs
Yang Zhang ∗, Zuocheng Xing, Cang Liu, Chuan Tang, Qinglin Wang
Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha, 410073, China

h i g h l i g h t s

• An analysis on the drawbacks of the existing warp schedulers is taken.
• A novel reordering method to maintain the time locality is taken.
• A warp scheduling scheme called LPI is taken. It allows overlapping of long- and short-latency warps to preserve locality.
• LPI can get an improvement of 2.2% over the baseline.

a r t i c l e i n f o

Article history:
Received 29 February 2016
Received in revised form
12 February 2017
Accepted 21 February 2017
Available online xxxx

Keywords:
GPGPU
Warp scheduling
Locality
Reordering

a b s t r a c t

As the need for high performance computing continues to grow, it becomes more and more urgent to
design a massive multi-core processor with high throughput and efficiency. However, when the number
of cores keeps increasing, the capacity of on-chipmemory is always insufficient. In amulti-core processor
such as GPGPU (General Purpose Graphic Processor Unit), dozens or hundreds of SMs (Stream Multi-
processor) coordinate to gain high throughput with several MB on-chipmemory. Furthermore, in one SM,
thousands of threads are organized as thread blocks to process instructions in a SIMT (Single Instruction
Multiple Threads) manner. As all the threads share the same on-chip memory, the mismatch between
large core number and small on-chipmemory capacity can easily impair the performance due to excessive
thread contention for cache resource.

An efficient thread scheduling method is a promising way to alleviate the problems and to boost
performance. From the hardware perspective, the instructions are executed by warps which are made
up by a fixed number of threads. So we propose a novel warp scheduling scheme tomaintain data locality
and to relieve cache pollution and thrashing issues. First, to make full use of time locality, we put the
disordered warps into a supervised warp queue and issue the warps from oldest to youngest. To utilize
space locality and to hide computation unit stalls, we put forward a new insertion method called LPI
(Locality Protected Insertion) to reorder warps in the supervised warp queue to better hide long-latency
warps with short-latency warps such as ALU operations and on-chip accesses. Over a wide variety of
applications, the new scheduling method gains at most 10.1% and an average of 2.2% improvements over
the baseline loose round-robin scheduling.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, GPUs have been a more and more powerful
and energy efficient platform for High Performance Computing
(HPC). As a kind of stream multi-processor, it is featured with
thousands of processors and few control units. For example,
state-of-the-art NVIDIA TITAN X with Maxwell architecture has
up to 3072 cuda cores and several MB on-chip memory [1].
It relies on massive cores to tolerate memory latency and to

∗ Corresponding author.
E-mail address: zhangyang@nudt.edu.cn (Y. Zhang).

deliver high throughput. On one hand, so many cores meet the
demand for massive parallel computing, on the other hand, it
inevitably introduces a large number of accesses to the memory
and causes cache contention and thrashing. As a result, the need
for a more intelligent scheduling strategy is much more urgent for
the architecture designers.

The early generations of NVIDIA GPU (for example GT200) do
not include L1 data cache as on-chip memory for simplicity. The
capacity of the only existed scratchpadmemory is far from enough,
especially for some memory intensive applications. Moreover,
the capacity of the scratchpad memory is designated by the
programmer at design time and it is not appropriate for the
applications with diverse access patterns, which prefer cache than

http://dx.doi.org/10.1016/j.future.2017.02.036
0167-739X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2017.02.036
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:zhangyang@nudt.edu.cn
http://dx.doi.org/10.1016/j.future.2017.02.036

2 Y. Zhang et al. / Future Generation Computer Systems () –

scratchpad memory. Therefore, the later generations introduce L1
data cache which shares a memory array with shared memory.
In the newest Maxwell architecture, the shared memory has an
exclusive memory array and the L1 data cache merges into the
texture cache [1]. As the computing ability of new architectures
upgrade so fast, we are not able to follow up the features of the
newest GPGPU architecture. So we take the Fermi architecture
for our target and the scheduling strategies applied on it can be
popularized to other new architectures.

Recent studies mainly focus on the decrease of the access to the
on chipmemory through bypassing and throttling [2–8]. Bypassing
is used when the system detects the memory is full of data and
any new data insertion will destroy the locality of the memory. So
the data skip the memory level and goes into the upper memory
level. Throttling is a hotspot in recent years. It can release the
cache contention and thrashing by fundamentally decreasing the
number of blocks on the cores. There are other studies to research
on data locality [9] and reuse distance in GPU [10]. However, L1
data cache is hard to make good use of. For the cache sensitive
applications, the enormous thread count makes cache difficult to
preserve locality. So we need to apply an intelligent scheduling
strategy to reserve the locality.

In addition to locality preserving, latency hiding is also very
important in GPGPUs. Preserving data locality can reduce long
memory access time and latency hiding can reduce pipeline stalls.
Previous works mainly focus on latency hiding. But few work
combines latency hidingwith locality preservingwhen scheduling.
We design a scheduling method to use warp classification for
latency hiding as two-level scheduling does and addwarp insertion
to make successive warps not too far away from each other for
locality preserving.

This paper mainly makes the following contributions:

• We take an analysis on the current warp scheduling methods
and show the drawbacks of them. We focus on the way to
preserve locality and hide latency at the same time to solve the
problems in the existing scheduling methods.

• We propose a novel reordering method to maintain the time
locality. This scheme reorders warps from oldest to youngest
and puts some especially long-latency warps to the back of the
queue.

• Based on the above reordered warp queue, we further propose
a scheduling scheme called LPI to allow better overlapping
of long-latency warps with short-latency warps to regain
localities lost by two-level scheduling and to well hide
computation unit stalls.

• We evaluate LPI on a simulated Fermi architecture and an
average of 2.2% improvement over the baseline can be achieved
over a variety of applications with different characteristics.

2. Background and motivation

2.1. Baseline architecture

Amodern unified GPU consists of multiple streammultiproces-
sors (SMs) or computation units (CUs). An SM runs instructions in
a manner of Single Instruction Multiple Threads. At each cycle, an
SM fetches and decodes an instruction in the front end, which is
further dispatched to multiple warps in the warp pool. After the
dispatch, the scoreboard will check the hazard. If a warp (typically
32 threads) has passed the scoreboard, it is qualified to be issued
to execute. The instruction execution is performed in Single In-
struction Multiple Data (SIMD) lanes, which constitute the execu-
tion units. The execution unit is much like a vector processor, that
works with a lot of computing resources. As multiple instructions

share the same fetch and decode stage, lots of hardware expenses
are saved.

Since the performance of modern GPU is always restricted by
the bandwidth and the memory latency, it presents a memory
system with multi-level to make use of data locality to make the
memory access more efficient. As we can see in Fig. 1, in each
SM, register file, L1 cache and the shared memory are fast on-chip
memories and they belong to the only SM. If one instruction fails
to hit on chip, the requests are pushed to L2 cache in the memory
partition through memory port and interconnect. The requests are
further transferred to the global memory unless the requests hit in
the L2 cache. It needs to be emphasized that the on-chipmemories
are private to each SM but L2 cache and global memory are not
private. Because all the blocks in different SMs can read and write
data in the global memory, data can be exchanged in the global
memory [1].

A kernel executes the GPU code through massive threads, the
number of which can be assigned by the programmer. Numerous
threads are organized hierarchically. A kernel is consist of several
thread blockswhich are formed bymany threads. A largeworkload
can be first divided into a few blocks and then into many threads.
Blocks can communicate through the global memory. But only the
blocks in one SM can share data in the shared memory. Threads
in blocks execute 32 threads in lockstep which is called a warp.
The threads in a block run in an SIMT (Single Instruction Multiple
Threads) model and they can synchronize among themselves
through barriers.

Nowadays, GPUs are increasingly used in broader application
domains where memory access patterns are both hard to analyze
and to manage in software-controlled caches. To optimize these
applications, we need to find effective ways to make use of the
considerable parallelism and the limited cache.

2.2. GPU scheduling method

The GPU scheduling method has a great effect on GPU
performance. With the LRR (Loose Round-Robin) scheduling
policy, all the warps assigned to a core are given equal priority
and are executed in a round-robin fashion. This scheduling policy
is the simplest with the least scheduling expenses and can meet
the demand of most regular programs. But for the many irregular
programs, especially those with intensive memory access, the LRR
scheduling policy is always inefficient. That is because for many
memory-intensive applications, most of the warps arrive at long-
latency memory operations roughly at the same time. The burst
of long-latency memory operations leads to core stalling because
there are no short latency warps to hide the long latencies. That is
the primary cause of inefficiency for modern GPUs.

The two-level warp scheduling is an optimization to the
baseline LRR scheduling and we take an implementation of two-
level scheduler similar to that in [11]. The scheduling strategy
attempts to hide two distinct sources of latency in the system: (1)
long operations, often unpredictable latencies, such as waiting to
be initialized with a kernel, synchronization, atomic operations,
texture operations, access to the DRAM and so on; and (2) short
operations, often with predictable and fixed latencies, such as ALU
operations and access to the on-chip memory. In the scheduler, an
active pool is created to hold warps with short operations and a
relatively large warp to hold warps with long operations. In each
pool, warps are scheduled in round-robin and the pending pool
will not be scheduled until all the active warps have finished.
However, it may cause performance decrease on the condition that
two continuous warps are separated when they have data locality.
In our implementation, we take a similar two-level division to the
warps to hide long-latency warps with short-latency ones.

Download English Version:

https://daneshyari.com/en/article/6873226

Download Persian Version:

https://daneshyari.com/article/6873226

Daneshyari.com

https://daneshyari.com/en/article/6873226
https://daneshyari.com/article/6873226
https://daneshyari.com

